หลักสูตรฝึกเตรียมเข้าทำงาน
ช่างไฟฟ้า
หน่วยการฝึก เดินสายอุตสาหกรรม
เล่มที่ 9
แผนที่แสดงที่ตั้งสถาบันพัฒนาฝีมือแรงงาน

สนิธไอแอกซาราประกอบการฝึกของสถาบันพัฒนาฝีมือแรงงานนัดต่อส่งข้อได้ที่

1. สถาบันพัฒนาฝีมือแรงงาน กรุงเทพฯ ถนนมิติไทย ค้อมอง เทศบาลบางปะอิน ถนน 10400 โทร.2451707-8
2. สถาบันพัฒนาฝีมือแรงงาน ราชบุรี ถนนราชบุรี-บ้านบัว ต.สัตหีบ อ.มีดัย ราชบุรี 70000 โทร.217707
3. สถาบันพัฒนาฝีมือแรงงาน ชลบุรี ถนนสุรนารี ต.ทับซุง อ.เมือง ชลบุรี 20000 โทร.284495-6
4. สถาบันพัฒนาฝีมือแรงงาน ลพบุรี ถนนลุมพลี-เชียงใหม่ ต.บ้านเซ่ง อ.เมือง ลพบุรี 52000 โทร.218642
5. สถาบันพัฒนาฝีมือแรงงาน ชลบุรี ถนนปรีดี ต.บ้านบัว อ.เมือง ชลบุรี 40000 โทร.237802
6. สถาบันพัฒนาฝีมือแรงงาน สระแก้ว ถนนสมเด็จพระยา ต.บางกระเจ้า อ.เมือง สระแก้ว โทร.312151
7. สถาบันพัฒนาฝีมือแรงงาน นครนคร ถนนแอนซี ต.สระทรายทอง อ.เมือง นครนคร 60000 โทร.221009
8. สถาบันพัฒนาฝีมือแรงงาน อุบลราชธานี ถนนศรีอรุณ ต.บางใหญ่ อ.เมือง อุบลราชธานี 34000 โทร.243650-6
ผู้จัดเก็บ อาจารย์ปัญญา เศรษฐา
สถาบันพัฒนาฝีมือแรงงาน

ผู้ตรวจ นายกิตติ บุญบัง
สถาบันพัฒนาฝีมือแรงงาน
นายเบญญา วัฒนศิริวสุก

ข้อกําหนดที่ 1

ตําแหนง 2535
จํานวน 500 เล่ม

หมายเหตุ พระราชบัญญัติโฆษณาจ้างนั้นที่และกิจการบริการรับจ้างสําหรับกระทรวงมหาดไทย
พ.ศ. 2535 ให้สืบจากสถาบันพัฒนาฝีมือแรงงาน กรมแรงงาน ไปสําหรับกรมพัฒนา
ฝีมือแรงงาน หันไปรวมที่ 13 มีนาคม 2535
คำนำ

การศึกษาขั้นพื้นฐานเป็นที่ยอมรับทั่วไป หลักสูตรและเอกสารประกอบการศึกษามีมาตรฐานและเจริญเติบ
อย่างชัด การพัฒนาหลักสูตรให้ทันสมัยและเป็นระบบ จึงมีการดำเนินการศึกษาขั้นพื้นฐานพัฒนาการพัฒนา
เป็นไปอย่างมีประสิทธิภาพ และผลิตอินเทอร์เนชั่นนัลของมาตรฐานในส่วนการศึกษาขั้นพื้นฐานอยู่ 21
สำนักงาน เพื่อพัฒนาหลักสูตรในขั้นรายละเอียดและจัดทำเป็นเอกสารประกอบการ
มีภายในความต้องการของประเทศและชาติ โดยการพัฒนาข้อบังคับของภาษา โครงสร้างเอกสารประกอบการพัฒนาหลักสูตร
และกลไกการรองรับระหว่างประเทศ(UNDP/ILO) ในการUNDP/ILO ได้ส่งเสริมข้อมูลและให้
เงินช่วยเหลือในการพัฒนาหลักสูตรดังกล่าว

กรมพัฒนาการมีนโยบาย จึงจัดตั้งคณะกรรมการควบคุมโครงการพัฒนาหลักสูตรประกอบด้วยผู้แทนกรม
พัฒนาการมีนโยบาย ผู้แทนกรมวิศวกรรมและผู้แทนเครือข่ายการเรียนรู้ระหว่างประเทศ ให้ท้าทายที่จะควบคุมการ
ดำเนินการของโครงการให้เป็นไปตามมาตรฐาน และการผลิตผู้ทรงคุณวุฒิเป็นผู้เชี่ยว ผู้ทรงวิทยา
โดยมีวัตถุประสงค์ในการพัฒนาการสอดคล้องกับการพัฒนา

การพัฒนาหลักสูตรโครงการใหม่ได้เป็นไปตามแนวคิดที่ทุ่มเท โดยเฉพาะอย่างยิ่งสำนักงานโครงการพัฒนา
ทั่วประเทศ จึงมีการแยกร่วมระหว่างประเทศ กรมวิศวกรรม คณะกรรมการควบคุมโครงการพัฒนา
หลักสูตร ผู้เชี่ยว ผู้ทรงศักยภาพที่มีความรู้จักด้านทฤษฎีการพัฒนาการใหม่ กรมพัฒนาการมี
นโยบายการพัฒนาข้อบังคับในที่นี้ และที่สุดในที่สุดว่า เอกสารประกอบการที่มีจะเป็นประโยชน์ต่อส่วนราชการอื่น ๆ
ตลอดจนผู้รับผิดชอบและธุรกิจสำคัญที่เกี่ยวข้องในการศึกษาขั้นพื้นฐาน

(นางอิศวร จุรณภักดี)
นักวิเคราะห์ 9 รัฐทรัพยากรบุคคล
ธุรกิจพัฒนาการมีนโยบาย
17 กรกฎาคม 2535
<table>
<thead>
<tr>
<th>รายละเอียด</th>
<th>เรื่อง</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ท่อ, อุปกรณ์ประกอบท่อและรายละเอียดของท่อเรียบสูงโพลี่ฟิลา</td>
<td>159</td>
</tr>
<tr>
<td>5</td>
<td>การตัดท่อ, ทำเกลียวท่อและการต่อท่อด้วยข้อต่อ</td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td>เครื่องมือและการตัดท่อ</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>การจับจิ๊ตท่อ</td>
<td>238</td>
</tr>
<tr>
<td>8</td>
<td>วิธีการใส่ท่อสำหรับปิดสำหรับท่อ</td>
<td>246</td>
</tr>
<tr>
<td>9</td>
<td>วางท่อและระบบท่อ</td>
<td>288</td>
</tr>
<tr>
<td>10</td>
<td>ตารางอภิปรายแบบ</td>
<td>299</td>
</tr>
</tbody>
</table>
ใบเสร็จการพิมพ์

<table>
<thead>
<tr>
<th>หลักสูตร</th>
<th>ช่างไฟฟ้า</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>ชื่อ</td>
<td>รวมการฝึก เกี่ยวกับอุปกรณ์ไฟฟ้า</td>
<td>159</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>หัวข้อ</th>
<th>ทะเบียน</th>
<th>วิทยาลัย</th>
<th>จำนวนชั่วโมง</th>
</tr>
</thead>
<tbody>
<tr>
<td>ปทุมธานี</td>
<td>6</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

วัตถุประสงค์

1. ผู้ประจำชั้นไม่กินสารพัด
2. ผู้ประจำชั้นป้องกันตนเอง
3. ผู้ประจำชั้นจะใช้เครื่องมือ|

วิธีสอน

1. บรรยาย

เนื้อหาสำคัญ

1. ทะเบียนรายชื่อไฟฟ้า
2. บันทึกการอบรมรายชื่อไฟฟ้า
3. สรุปผลการอบรม|

อุปกรณ์ช่วยเหลือ

1. การควบคุม 2. ใบสมุด 3. เครื่องช่วยข้อมูลพื้นฐาน
4. อุปกรณ์ช่วยจัดไว้|

การมอบหมายงาน

1. ใบสมุด

การวัดผล

- |

หนังสืออ้างอิง

-
ไหลผ่านท่อ (CONDUIT)

วัสดุประสานท่อเป็นท่อเต็มและปิดที่ตามที่ต้องการให้ใช้ได้ที่ไหนก็ได้ ทุกฉนวนไฟฟ้า

1. ท่อเชื่อมสายไฟฟ้าชนิดบาง (Electrical Metallic tubing, EMT)
 1.1 สามารถใช้ได้ในทุกภาวะที่ปลอดภัย หลักล่างการประสานท่อสดทางชนิด
 1.2 ไม่สามารถใช้กับสายไฟฟ้า
 1.3 ใช้ในแนวในการปิดผนังหรือความชื้นสูง เช่น ใบตอง Return Air หรือหลังบาน+รวม
 1.4 ของ, สีต แอนด์อุปกรณ์ประกอบ ยังมีการปล่อยไฟในท่อที่ริดกันโดยตรงหรือไม่

 รูป แสดงทางการฉนวนท่อตามแบบท่อ EMT

1.5 จากบนสู่ล่างอย่างไร ตามทางที่เหมาะสมดังนี้

นัยน์:\n plausible
2. หัวร้อยสายชนิดหนาผนังกลาง (Intermediate Metal Conduit, IMC)

2.1 สามารถใช้ตัดต่อได้ทางระบบการ และทุกส่วนที่ต่อ
2.2 มีความทนทานต่อ EMF และทำเกลือกเกิด
2.3 ไม่มีช่องโหว่ หัวปล่อยไฟฟ้า หัวเครื่องกล บริเวณวงจรและบริเวณที่มีความชื้นสูง ตลอดกายภาพของ
2.4 ไม่ปรับไฟฟ้าภายนอกใหญ่ ๆ
2.5 จานแนวตันสู่สูงในต่อสายพานที่ 9 และพันท์ถักวางสูงสุดในต่อสาย ไลน์ต้านสายแพร่ที่ 10

3. หัวร้อยสายชนิดเหล็ก (Rigid Steel Conduit, RSC)

3.1 สามารถใช้ตัดต่อได้ที่ต่อ IMC เต้าร้อยสายพาน ส่วนใหญ่ใช้กันบ้านหลัง IMC ใน
ส่วนครอบคลุมที่สูง เเสนผู้ย่อยที่ลากยาวกว่า 4"-6" เชน การวางทดลองบนสายไฟใน
และวางสายที่นั้น ๆ
4. ท่อ หรือ อุปกรณ์ฉนวนและสาย ตรวจสอบก่อน ทำการติดตั้ง

ท่อ PVC มีความทนทานกับที่มันกันอุณหภูมิ ดังนั้นจะไม่ใช่ในบริเวณที่มีอุณหภูมิสูง การติดตั้งทั่วไปจะเกิดลอยในบริเวณ ขณะที่ไม่มีโอกาสสุ่มระหว่าง กระแสจากสิ่งต่าง ๆ โดยทั่วไปจะมีความชันสูง อุปกรณ์ถูกจัดทำจะออกกันความชันนี้ ท่อ PVC จะไม่ใช่ในบริเวณที่มีการกระทำโดยว่า งานต่างๆ ทำที่การทดสอบความทนทานและไม่เกิดความเสียหายดังนี้

5. ท่อยืดหยุ่น (Flexible Metal conduit, FMC)

การติดตั้ง ได้รับการออกแบบ เทียบเคียงกับ ท่อเหล็กท่อเหล็ก หรือโพลีเอทอลีเตรียม ในการติดตั้ง บริเวณที่มีการกระทำจากอากาศ ศักยภาพการส่งเสียงที่ดี ท่อเหล็กท่อเหล็ก และมีการควบคุมท่วมต่างๆ ที่ติดตั้ง บริเวณที่มีการกระทำจากอากาศ ได้แก่ กำลังไฟฟ้าเช่น ท่อยืดหยุ่นสามารถหล่อเลื่อนอิเล็กทรอนิกส์เมื่อเกิดการกระแทกในสายไฟฟ้า

ขอขอบคุณ การติดตั้ง

ก. ส่วนที่เป็นกันน้ำ เป็นพิกัดกันน้ำ (Rain Tight)

ข. ใส่ฝาปิดช่อง อาจาก

ค. ใส่ฝาปิดช่องแบบเก็บวัสดุ

ง. ใส่ฝ่ายปิดช่อง

จ. ส่วนที่เป็นกันน้ำ-template
สําหรับการประดับการต่อกันของ ท่อโพลีนิคเกิร์ก ขนาด 1", 3/4", 1/2", 1/4", 1/8", และ 3/8"

รูป ลูกบิดประกอบการต่อกันของท่อโพลีนิคเกิร์ก ขนาด 1", 3/4", 1/2", 1/4", 1/8", และ 3/8"

ลูกบิดประกอบการต่อกันของท่อโพลีนิคเกิร์ก (Fittings)

1. ลูกบิดประกอบการต่อกันของท่อย่อยโพลีนิคเกิร์ก (Fittings for Thinwall EMT)
 1.1 ชนิดของทรงหัวต่อกันต่างๆ (E.M.T. CONNECTORS)

E.M.T. CONNECTORS
Set Screw Type (Concrete Tight) E.M.T. CONNECTORS
Compression Type (Rain Tight and Concrete Tight)

Set Screw Type (Concrete Tight) Two Piece Type (Concrete Tight)
Insulated Throat
1.2 ชะลอกระหว่างขั้นเกียร์ (E.M.T. Couplings)

<table>
<thead>
<tr>
<th>E.M.T. COUPLINGS</th>
<th>E.M.T. COUPLINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Screw Type (Concrete Tight)</td>
<td>Compression Type (Rain Tight)</td>
</tr>
</tbody>
</table>

1.3 สั้นเครื่องมือ (Straps for E.M.T.)

<table>
<thead>
<tr>
<th>ONE-HOLE (Snap-On) STRAPS FOR E.M.T.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TWO-HOLE STRAPS FOR E.M.T.</th>
</tr>
</thead>
</table>

1.4 ข้อต่อและอุปกรณ์ประกอบทางอื่น ๆ

<table>
<thead>
<tr>
<th>90° ANGLE E.M.T. CONNECTORS</th>
<th>*With Neoprene Gasket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Type (Rain Tight)</td>
<td>INSIDE CORNER PULL ELBOWS</td>
</tr>
<tr>
<td>E.M.T. to E.M.T.</td>
<td>E.M.T. to E.M.T.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CORNER PULL ELBOWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.M.T. to Box</td>
</tr>
</tbody>
</table>

Compression Type

E.M.T. to E.M.T.
ไฟย้อมูล

For E.M.T. to Flexible Steel Conduit
Set Screw Type

COMBINATION COUPLINGS
For E.M.T. to Rigid Conduit (Unthreaded)

OFFSET CONNECTORS
E.M.T. to Box
Set Screw Type (Concrete Tight)

Compression Type

2. อุปกรณ์ประกอบสายไฟพื้นฐาน (Fitting for Rigid conduit)

2.1 จุ๊บต่อวาทาวาต่อเกลียวละและทางเกลียว

SET SCREW CONNECTORS
For Threadless Rigid Conduit

SET SCREW COUPLINGS
For Threadless Rigid Conduit

2.2 จุ๊บต่อพื้นฐานแบบต่าง ๆ (Condulets) และหีบพันในระยะจัดภัค

THREADED OVAL CONDUIT BODIES
For Rigid Conduit/Copper Free Aluminum
Type LB

Type LB — With Cover and Gasket Assembled

Type T

Type T — With Cover and Gasket Assembled
GASKETS FOR OVAL CONDUIT BODIES

Type LR

Type LR — With Cover and Gasket Assembled

COVERS FOR OVAL CONDUIT BODIES

Type LL

Type C

Type LL — With Cover and Gasket Assembled

Type C — With Cover and Gasket Assembled

CORNER PULL ELBOWS
Rigid to Rigid

Rigid to Box

*With Neoprene Gasket

OFFSET NIPPLES
Standard 3/4" Offset

ONE-HOLE (Snap-On) STRAPS FOR RIGID

TWO-HOLE (Snap-On) STRAPS FOR RIGID
INSULATED METALLIC GROUNDING BUSHINGS
Thermoplastic Liners

INSULATED METALLIC BUSHINGS
Thermoplastic Liners

PLASTIC INSULATING BUSHINGS
105°C. Flame Retardant

CONDUIT BUSHINGS

CONDUIT NIPPLES
With Insulated Throat

90° SHORT RADIUS ELBOWS
THREE-PIECE COUPLINGS

CONDUIT LOCKNUTS
2.4 อุปกรณ์แน่นผนัง (Fitting for liquid tight)

STRAIGHT CONNECTORS

With Insulated Throat

90° ANGLE CONNECTORS

With Insulated Throat

3. อุปกรณ์ระบายอากาศสายซิลิโคนและสายยางกันภัย (Fitting for Armored cable and Flexible steel conduit)

SQUEEZE TYPE BOX CONNECTORS

For Armored Cable and Flexible Steel Conduit

*¼" K.O.

COMBINATION CONNECTOR

For Non-Metallic, Armored Cable and Flexible Steel Conduit

*½" K.O.

BOX CONNECTOR

For Armored Cable

*¼" K.O.

DUPLEX CONNECTOR (Clamp Type)

For Non-Metallic, Armored Cable and Flexible Steel Conduit

*½" K.O.
4. ที่พุ่งไฟ (Service Entrance Fitting) การรับไฟเข้าหัวระบบของเครื่องหมายเปลี่ยนการจะใช้หัวครอบไฟเพื่อป้องกันไฟ, ล้าว และการกระแทกสิ่งบางกับหก

SERVICE ENTRANCE CAPS
Clamp-On Type
For Rigid or E.M.T. Conduit

Mast-Head Slip-Fit Type

Clamp-On Type
For Rigid or E.M.T. Conduit

ผลิตภัณฑ์
ผลิตภัณฑ์
ผลิตภัณฑ์

5. จุดต่อกำลังไฟฟ้า (Ground fitting)

GROUND FITTINGS (Sizes listed in inches = size of pipe)
Fit 10, 8, 6, 4, or 2 Awg Grounding Wire

Fits 8, 6 or 4 Awg Grounding Wire

6. อุปกรณ์ (Service insulators)

HEAVY DUTY PIPE MOUNTING WIREHOLDER
Adjustable
HEAVY DUTY WIREHOLDERS
Galvanized Steel Saddle with Solid Rivet Through Head

RADIO OR MIDGET TYPE WIREHOLDERS
Light Service Galvanized Reinforcing Cup

STANDARD WIREHOLDERS
Galvanized Steel Reinforcing Cup

Steel Channel Bar Only (11" Length)

7. Fish Tape (Fish Tape)

 summarize how to use fish tape. Here's a summary:

- Fish Tape
- FW 50: 50 ft.
- FW 100: 100 ft.
- FW 200: 200 ft.
โครงการสัญญาณไฟобща

1. SQUARE BOX

การใช้งานส่วนใหญ่จะใช้เป็น Box สำหรับต่อสายหรือใช้เป็น Auxillary box ที่มีที่เก็บในรางมีการใส่ต่อเกณฑ์ 3. ให้ตัว Number box จะบอกจุดและความ
แห่งต่างของ box ที่เป็นชั้นที่ยาวห่างกันประมาณ 4 นิ้ว x 4 นิ้ว x 1 นิ้ว จะมีระยะสั้นกว่าได้กลับ
จะยาวกันต่ำเก็บ ที่ 1/2

2. OCTAGON BOX และ ROUND BOX

OCTAGON BOX

ROUND BOX
การใช้งานส่วนใหญ่จะใช้เป็น Box ตลอดสายดิจิตอล หลักที่สำคัญคือการติดตั้ง Box อย่างถูกต้องตามมาตรฐานสากล ที่มีส่วนประกอบหลักๆ ประกอบด้วย กล่องฝาทึบ, หลอดไฟฟ้า, กล่องเล็กๆ สำหรับติดตั้งกล่องฝาถอดได้ 2 แบบ

1. Octagon Box

โลตัสเหล็กมีขนาด 4" x 4" x 1 1/2" และมีขอบสีขาวปิดล้อมด้วย 1" - 1 1/2"

3. HANDY BOX

การใช้งานส่วนใหญ่จะใช้เป็น Box ตลอดสายไฟฟ้าที่มีขนาดเล็กกว่ากล่องฝาทึบ แต่จะมีขนาดที่เทียบเท่ากันกับกล่องฝาทึบ สำหรับการติดตั้งต้องใช้กับกล่องฝาทึบไม่ว่าจะใช้กับกล่องฝาทึบแบบไหนก็ตาม ขนาดของ HANDY BOX มีขนาด 4" x 2" x 1 1/2" สำหรับขนาดจะมีขนาด 3 1/2 - 3/4"

4. SINGLE GANG BOX

BOX ที่ใช้เฉพาะสำหรับติดตั้งกล่องสำหรับเครื่องมือต่างๆ ที่ติดตั้งในกล่องฝาทึบ ขนาดของ SINGLE GANG BOX มีขนาด 1" - 1 1/2"

ชื่อต่าง ๆ ของ GANG BOX แบ่งตามล่าง
สัปปะหรูแห่งไฟ (Box Covers or Plates)

5. Pull Box
เป็น Box ที่ใช้เป็นที่ถอดลาย ล็อกขนาดของพายหรือที่สั้นกว่าลูกสียาริชสิ่งต่างๆ ในการที่จะจังหวะ หัวลูกจ้อนและระบบไก่ ติดกับสิ่งที่วัสดุหรือย่อยด้วย Hanger Rod สะท้านและระดับเว้นก็จะพิสูจน์ ด้วย Square Box ผลลัพธ์แล้วให้กลับไปที่ Square Box ควบคุมไม่เสีย เช่น มีจำนวนสายใน ห่วงพายขั้นสูงขนาดใหญ่จะมีสั้นและล้มขั้นกัน

วิธีการลากพายของ Pull box

1. ในกรณีที่พาย สถานะและลักษณะสาย

![Diagram](image)

วิธีการ

\[
L = 8 \times \text{ขนาดของ} \times 2
\]

\[
W = \text{ติดกับพาย} + \text{ลูกจ้อนประกอบพาย} \quad \text{เช่น Lock nut และ Bushing}
\]

พอแน่นสามารถประกอบได้ภายในขนาดที่มีการติดกับพายขั้นสั้นไม่รวมกัน 4 ซม. (1.60"")

\[
L = 8 \times 2"
\]

\[
\approx 16" \quad \text{ไม่ละเอียด\\n}
\]

\[
W = 1.6" + 1.6" + 2"
\]

\[
\approx 5.20" \quad \text{ไม่ละเอียด\\n}
\]

. ต้องใช้ขนาด = 6"
2. ในการจัดหีบขาและรอบหลอดยุ้ง

\[L = 8 \times \text{ขนาดของ } \varnothing \text{ หัวฟิทติ้ง} \]

\[W = \begin{array}{l}
\text{ปรับอุปกรณ์การตัดต่อหัวฟิทติ้ง และระบบหลอดยุ้ง เช่น Lock nut และ Bushing}
\end{array} \]

เฉพาะของระบบหลอดยุ้งทำให้สามารถปรับให้เหมาะสมได้.

จากค่า \(L = 8 \times 3'' \) คิดได้ว่า

\[W = (1.6 + 1.6 + 1.6 + 1.6) + (3'' + 1'' + 3'') \]

\[\approx 11.15'' \text{ (ไม่ถึงความยาว) } \]

\[\varnothing \text{ หัวเชื่อมต่อ } = 12'' \]
3. ในการตัดแยกเป็นส่วนกระจาย

การตัดแยกแบบไหล่หนึ่ง ลดการติดต่อกัน ทั้งนี้ทำให้การติดต่อกันนั้นต้องใหม่ ระหว่างทางของรายละเอียดและตั้งหมายหน้าถัดไป

วิธีการ ในการตัดแยกแบบไหล่หนึ่ง ตัดสุดท้าย 3" ที่ปากไฟ

\[
L_1 = 6 \times \text{ขนาดของ 2 ทางไฟ} + (\text{ผลงานของ 2 ทางไฟ}) \\
L_2 = 6 \times \text{ขนาดของ 2 ทางไฟ} + (\text{ผลงานของ 2 ทางไฟ}) \\
D = 6 \times \text{ขนาดของ 2 ทางไฟ} \\
\]

\[
L_1 = 6 \times 3 + (2 + 2) \\
= 22" \\
L_2 = 6 \times 3 + (2 + 2) \\
= 22" \\
D = 6 \times 3 \\
= 18"
\]
4. ในกรณีที่มุ่งหมายการติดตั้ง 3 ทางทิศจากบน

$$A = 6 \times ที่ติดตั้ง + ผลรวมของที่เล็ก$$

$$A = (6 \times 2) + 2 + 2 = 16''$$

$$B = 8 \times ที่ติดตั้ง + ผลรวมของที่ยาว$$

$$B = 8 \times 3 = 24''$$

$$C = \text{จานวน} \times ที่ติดตั้ง\text{รวมกัน} + ผลรวมของที่ยาวที่สุดที่ยาว$$

$$C = (3 + 3 + 3) + (1.6 + 1.6 + 1.6 + 1.6) + (8)$$

$$C = 20''$$

$$D = 6 \times ที่ติดตั้ง + ผลรวมของที่ยาว$$

$$D = 6 \times 2$$

$$D = 12''$$
ตารางแสดงรายละเอียดของท่อ (Specification table)

ตารางแสดงรายละเอียดของท่อ (Specification table) จะส sumaรูปที่นก-
สมบัติและลักษณะทางอิเล็กทรอนิกส์ ความน่าจะเป็น, ความยืดหยุ่น, เส้นทางผุ้ยกลาง
น้ำหนักที่จำเป็นต้องใช้และอุปกรณ์ที่ใช้ เพื่อให้ทำการแบ่งแยก

1. ขนาดของท่อเหล็ก (Size of Electrical Metallic tube)

<table>
<thead>
<tr>
<th>Trade size</th>
<th>Outside diameter</th>
<th>Approximate inside diameter</th>
<th>Minimum wall thickness</th>
<th>Standard weight</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>lbs/10ft</td>
<td>kg/10ft</td>
</tr>
<tr>
<td>1/2</td>
<td>0.706</td>
<td>0.622</td>
<td>0.040</td>
<td>3.223</td>
<td>1.462</td>
</tr>
<tr>
<td>3/4</td>
<td>0.922</td>
<td>0.824</td>
<td>0.048</td>
<td>4.868</td>
<td>2.208</td>
</tr>
<tr>
<td>1</td>
<td>1.163</td>
<td>1.049</td>
<td>0.054</td>
<td>6.792</td>
<td>3.081</td>
</tr>
<tr>
<td>1-1/4</td>
<td>1.510</td>
<td>1.380</td>
<td>0.061</td>
<td>10.441</td>
<td>4.736</td>
</tr>
<tr>
<td>1-1/2</td>
<td>1.740</td>
<td>1.610</td>
<td>0.061</td>
<td>12.108</td>
<td>5.492</td>
</tr>
<tr>
<td>2</td>
<td>2.197</td>
<td>2.067</td>
<td>0.061</td>
<td>15.415</td>
<td>6.992</td>
</tr>
</tbody>
</table>

Applicable Tolerances

Outside Diameter: ±0.005 inch (0.13mm)
Wall Thickness: ±18%
The wall thickness shall not vary more than 0.003 inch (0.08mm) throughout a 10 foot long.
Length: ±0.25 inch (6.4mm).

E.M.T (Electrical Metallic Tubing)
"Listed by UL and Approved by CSA"
UL listed No. E44051 CSA approved No. LL25861-1
Federal Specifications WWC-563

ขอ (จากตาราง)

1. 29.5 mm.
2. 26.6 mm.
3. 1.4 mm.
4. 1.011 kg/m
5. 3048 mm (3.048 m)
2. ขนาดของท่อโลหะ (Size of Intermediate Metal Conduit)

1. เส้นผ่าศูนย์กลางภายนอก (Outside diameter)
2. ความหนาของท่อ (Wall thickness)
3. ความยาว (m) (length)

IMC (Intermediate Metal Conduit)
"Listed by UL"
UL listed No. E-62193

<table>
<thead>
<tr>
<th>Trade size</th>
<th>Outside diameter</th>
<th>Length without coupling</th>
<th>Minimum wall thickness</th>
<th>Nominal weight per 100 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal</td>
<td>Minimum</td>
<td>Maximum</td>
<td>in</td>
</tr>
<tr>
<td>1/2</td>
<td>0.815</td>
<td>0.810</td>
<td>0.820</td>
<td>20.7</td>
</tr>
<tr>
<td>3/4</td>
<td>1.029</td>
<td>1.024</td>
<td>1.034</td>
<td>26.1</td>
</tr>
<tr>
<td>1</td>
<td>1.290</td>
<td>1.285</td>
<td>1.295</td>
<td>28.8</td>
</tr>
<tr>
<td>1-1/4</td>
<td>1.638</td>
<td>1.630</td>
<td>1.645</td>
<td>32.8</td>
</tr>
<tr>
<td>1-1/2</td>
<td>1.883</td>
<td>1.875</td>
<td>1.890</td>
<td>37.8</td>
</tr>
<tr>
<td>2</td>
<td>2.360</td>
<td>2.352</td>
<td>2.367</td>
<td>45.9</td>
</tr>
<tr>
<td>2-1/2</td>
<td>2.857</td>
<td>2.847</td>
<td>2.867</td>
<td>54.1</td>
</tr>
<tr>
<td>3</td>
<td>3.476</td>
<td>3.466</td>
<td>3.486</td>
<td>68.3</td>
</tr>
</tbody>
</table>

Applicable Tolerances
Wall Thickness: +0.015" (-0.4mm) or -0.005" (-0.1mm)
There is no specific wall thickness or tolerance for rigid conduits.
The only specifications available are those in the National Pipe
Length: ± 1/4", inch (6.4 mm)

(จากคำว่า "中介金属管"
1. 32.8 mm.
2. 2.16 mm.
3. 3022.6 mm. (3,023 m)
<table>
<thead>
<tr>
<th>ใบคำร้องการสอบ</th>
<th>หัวข้อสถาบัน</th>
<th>หมายเหตุ</th>
<th>จำนวน</th>
<th>เวลา</th>
</tr>
</thead>
<tbody>
<tr>
<td>วิธีการสอบแบบสัมภาษณ์</td>
<td>1. อธิบายวิธีการทดสอบอย่างละเอียดอย่างละเอียด</td>
<td>จัดสอบ 5</td>
<td>6</td>
<td>ราย</td>
</tr>
<tr>
<td>วิธีสอบ</td>
<td>1. บรรยาย 2. สาธิต</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>หัวข้อสำคัญ</td>
<td>1. การทดสอบ 2. การทดสอบแบบสัมภาษณ์</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ข้อมูลข้อมูลสิ่ง</td>
<td>1. ระดับวิชา 2. ปัจจัยอื่นๆ 3. เงื่อนไขขั้นต่ำ 4. ประกาศของทางอื่นๆ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>การอธิบาย</td>
<td>1. ปัจจัยอื่นๆ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>การวัดผล</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>หนังสืออ้างอิง</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
การตัดท่อ (Cutting Conduit)

เครื่องมือที่ใช้ในการตัดท่อ

1. เลื่อยท่อโลหะควาย (Metal hacksaw)
2. เครื่องมือจับท่อ (Pipe vice)
3. ตะไกร้ (File)
4. เครื่องมือตัดคอหนา (Pipe cutter)

ลำบัตรในการตัดท่อ

1. ท่อนท่อโลหะ

1. วางลงบนเครื่องมือจับท่อโดยให้ที่หัวท่อที่ตัดท่วงจากเครื่องมือจับท่อประมาณ 15 ซม.
2. หมุนท่อนท่อแล้วจับที่อาการจับท่ออยู่ใกล้กันลง
3. เลื่อนท่อให้ตรงระหว่างมุมที่ถูกกำหนดแล้วจับท่อนท่อแบบคอกว้าง
2. นำขาตัดดัก

1. นำขาตัดดักวาง เลื่อนโดยใช้ที่วัลล์แนว ปลายคาดที่ปลายใบไม้ หลังต่อกับข้องแมวดักดักดักดักดักดักดักดักดักดักดักดักดัก

3. ตัดดัก

1. จับ เลื่อนให้ดีกับ ตากุ้น
2. ออกจากพักโดยใช้ปากลายตัวใหญ่ แล้วจะไปคุ้ม
3. เมื่อพักไปแล้วจะเห็นสีที่เป็นขอบมาไปจับกับพักออก

เข้าของ thầyเกียรติ และการสอนทฤษฎีพาย
4. นั่งคอมสุ่งคา

1. ใช้ตะปูแลงฝักหวายคั้น
2. ใช้ Reamer ประยุกต์ภายในของโถ
3. นำพอดอกจากเครื่องจักร
5. การตัดทอง

1. ให้ใช้เครื่องตัดทอง (Pipe cutter) ทำการตัดทองให้ที่สุดของเครื่องจักร ที่แน่นอน โดยประมาณ 2 ช่องสี่เหลี่ยม
2. ใช้เลื่อยมือสำหรับตัดทอง ตัดทองตามส่วนที่เหลือในช่องที่ 1 นั้นช่องที่ 4

การทำเกลียวทอง (Threading Conduit)

1. เครื่องทำเกลียวทองความมืด (Thread cutter) มี 2 ชั้นที่
 ชั้นที่ 1
 ชั้นที่ 2

ที่จับทองโดยการรัด
เกลียวไขว่แน่น
2. เครื่องตัดหัวกลับ (Electric thread cutter)

เครื่องตัดหัวกลับมีการทำงานที่รวดเร็วและมีความแม่นยำ เหมาะสำหรับงานที่มีความละเอียดมาก ๆ หรืองานที่ต้องการคุณภาพสูง.
รูป 1. กระทำเกลียวหลอดด้ายไฟฟ้า

จำเป็นในการทำเกลียว

1. เนื่องจากขั้นตอนที่ 2 ที่เราจะมีการใช้กระชากไฟฟ้า ควรชุบที่มือไว้ก่อน ที่จะทำเกลียว โดยให้พอกเท้าเกลียวไว้หากกันพื้นที่จุดที่จะ

2. กว้างเกลียว Clamp ให้ยั้งไม่ให้หลุด

3. ใช้ผลิตภัณฑ์รากบัลลัง เข้าเท้าเกลียว
 (ตามกลิ่น)
3. เหมาะสำหรับการชมหรือทดลองวิธีการผลิตกลีบพันกัน:

- รูปภาพ: ภาพแสดงการผลิตกลีบพันกัน

- คำอธิบาย: รายละเอียดการผลิตกลีบพันกัน
การติดต่อกลุ่มคู่ขนาน (Connecting Condnsit)

1. การติดต่อกลุ่มคู่ขนาน Feed coupling

1. นํ้าแลกไม้ต่อส่วนยาวเท่าหนึ่ง 1 + ต
(เท่ากับความยาวของกลิ่น Coupling
บวกกับความยาวของ Locknut)
2. นํ้าแลกไม้ต่อส่วนที่ 2 ให้ความยาวเกินกว่า
เท่าหนึ่ง 1 1 (เท่ากับความยาวครึ่งหนึ่ง
ของ Coupling)
3. ทุก Locknut เอาใส่ทองแดงแข็งสุกเกลียว
4. ทุก Coupling ตาม Locknut ให้สูด
5. นํ้าทองแดงที่ 2 มาติดกลุ่มคู่ขนาน Coupling
กลับอยู่มาเข้ากันอย่างเข้าใจง่ายตรงกลาง
ของทองแดงที่ 2 ทุก Locknut ถูกใส่
แนบศักย์ Coupling

2. การติดต่อกลุ่มคู่ขนาน Union coupling

1. นํ้าแลกไม้ปลายปลายต่อกัน
2. นํ้า nut ต้องเข้าในทองแดงที่ 2
3. ทุก Ring ตาม Nut
4. ทุก Nipple เขาปลายทองแดงที่ 2
5. นำปลายพาหุข้อมาต่อกัน
6. ขึ้น Nut เข้าที่ Nipple ไหม้แม่

3. การต่อมหากลางด้วย Coupling connector

1. ลักคอขณะวางที่กลองและเลือกนำมาคาด
 เข้าต่อกัน

2. ที่กลองที่ปลายของทองเหลือง ให้หน่อย
 ยาวกับหัวพันข้างบนของ Coupling connector
3. แสดงรายละเอียดในโฟโต้เรียบ

4. นำ Coupling Connector ขึ้นกลิ่มว่า
 นำไปตลาดสำหรับเก็บเกี่ยวชิ้นไฟแน่น
 แล้วนำไฟสีต่อเข้ากับเก็บเกี่ยวตาม
 ใช้ปั่นจนสูงเกินกว่าชิ้น ไฟแน่น
 ปั่นที่สูงจนสูงเพื่อเก็บเกี่ยว

5. ใช้พันชิ้นประกอบนำไปตลาดไฟแน่นชิ้น
4. การติดตั้งถักด้าย Coupling Connector ในมันตาม 다음과:

1. ล็อคของ Coupling แบบธรรมดาสกุล
 สักหัวบีบปลายทอง 2 ตัว มีเกลียว (Stopper)
 สักหัวการเชื่อมของ Coupling ผ่าน
 สมบูรณ์ที่

2. นำ Coupling สอดเข้าปลายทองแห่งแรก
 แล้วขับสกุลไปตาม

3. นำปลายของส่วน 2 ต่อเข้าใน Coupling
 แล้วขับสกุลที่จับฉีดหลังมาไขมัน
ปั้นเรื่อง เกี่ยวกับการตัด

<table>
<thead>
<tr>
<th>เรื่อง</th>
<th>เกี่ยวกับการตัดก่อนทำไม</th>
<th>การตัดก่อนจะเกิดอะไรขึ้น</th>
<th>การตัดก่อนจะเกิดอะไรขึ้น</th>
<th>การตัดก่อนจะเกิดอะไรขึ้น</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. บอกลักษณะของ เครื่อง ที่เกี่ยวกับการตัดก่อน</td>
<td>บอกลักษณะของ เครื่อง ที่เกี่ยวกับการตัดก่อน</td>
<td>บอกลักษณะของ เครื่อง ที่เกี่ยวกับการตัดก่อน</td>
<td>บอกลักษณะของ เครื่อง ที่เกี่ยวกับการตัดก่อน</td>
<td>บอกลักษณะของ เครื่อง ที่เกี่ยวกับการตัดก่อน</td>
</tr>
</tbody>
</table>

วิธีการตัด

1. ปรับภาพ 2. สาดที่

การตัดก่อน

1. เครื่องมีดตัด (Bender) ชนิดต่าง ๆ
2. การตัดก่อน
 - การตัดก่อน 90° ด้วย Stubber Hickey
 - การตัดก่อน 90° ด้วย Standard Model Bender
 - การตัดก่อน 90° ด้วย Back-to-Back Bens

อุปกรณ์ช่วยเหลือ

1. กระดาษด้าน 2. ใบเท้าดิน 3. เครื่องเจาะชิ้นที่ตัด 4. อุปกรณ์ช่วยจับ

การลงมือตัด

ผ่านพิธีการจัดงาน จากเปิดงาน

การวัดกัด

จากภาพปฏิทินงาน
BENFIELD® BENDERS & HICKEYS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FOR BENDING:</th>
<th>APPLETON</th>
<th>ITT HOLUB</th>
<th>STEELDUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Model</td>
<td>½" EMT only</td>
<td>B-1</td>
<td>18-701</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>¾" EMT - ½" Rigid</td>
<td>B-2</td>
<td>18-702</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1" EMT - ¾" Rigid</td>
<td>B-3</td>
<td>18-703</td>
<td>3</td>
</tr>
<tr>
<td>Power-Jack® Foot Pedal</td>
<td>1" EMT - ¾" Rigid</td>
<td>BJ-5</td>
<td>18-705</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1½" EMT - 1½" Rigid IMC</td>
<td>BJ-6</td>
<td>18-706</td>
<td>6</td>
</tr>
<tr>
<td>Plumb-Bob Hickey</td>
<td>½" Rigid</td>
<td>HB-7</td>
<td>18-707</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>¾" Rigid</td>
<td>HB-8</td>
<td>18-708</td>
<td>8</td>
</tr>
<tr>
<td>Short Radius Double Groove</td>
<td>½" EMT - ¼" Rigid</td>
<td>B-9</td>
<td>18-709</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>¾" EMT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benfield® Stubby</td>
<td>½" EMT only</td>
<td>HB-10</td>
<td>18-710</td>
<td></td>
</tr>
<tr>
<td>Hickey</td>
<td>¾" EMT - ½" Rigid - ¼" IMC</td>
<td>HB-11</td>
<td>18-711</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1" EMT - ¾" Rigid - ¾" IMC</td>
<td>HB-12</td>
<td>17-712</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1½" EMT - 1½" Rigid - 1½" IMC</td>
<td>HB-13</td>
<td>18-713</td>
<td></td>
</tr>
<tr>
<td>Rigid and IMC Bender</td>
<td>½" Rigid - ½" IMC</td>
<td>1M-50R</td>
<td>18-716</td>
<td></td>
</tr>
<tr>
<td></td>
<td>¾" Rigid - ¾" IMC</td>
<td>1M-75R</td>
<td>18-717</td>
<td></td>
</tr>
<tr>
<td>Rigid & IMC Power-Jack</td>
<td>1" Rigid - 1" IMC - 1¼" EMT</td>
<td>BJ-6</td>
<td>18-706</td>
<td></td>
</tr>
<tr>
<td>Hi Strength Handles with Zip Guide</td>
<td>¾" IPS X 38" long expanded end</td>
<td>BPH-75</td>
<td>18-719</td>
<td>X-200</td>
</tr>
<tr>
<td></td>
<td>1" IPS X 44" long</td>
<td>BPH-100</td>
<td>18-720</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1½" IPS X 54" long</td>
<td>BPH-125</td>
<td>18-721</td>
<td></td>
</tr>
</tbody>
</table>

MARKETERS CATALOG NUMBERS

BENFIELD® BENDERS & HICKEYS are made of virtually indestructible alloy malleable iron. Designed especially for rigid conduit and the new IMC conduit.

¾" size makes 4" N.E. Code Radius Bend

¾" size makes 5" N.E. Code Radius Bend

These models have extra-heavy sections throughout for extra heavy workloads.
โครงสร้างของ BENDER

2. เครื่องทบทวนไซโคลดีค (Hydraulic bender) การทบทวนมีไมลิเทอร์ ยาวที่ก้านในหน่วยคือ 1 จำเป็นต้องใช้เครื่องทบทวนไซโคลดีค เนื่องจากเครื่องทบทวนยังคงซ้าย ลำบากใจได้มาก ในการใช้การบังคับจะไม่ปลอดภัยในทางที่ทำให้เกิดความเสียหายได้ง่าย

รูป เครื่องทบทวนไซโคลดีค
กันรัศมี (Bending conduit)

1. กันรัศมี 90° โดย Stubber Hickey

วิธีวัดความยาว (1) สำหรับรัศมีโค้ง 90° โดยใช้ Bender จากรัศมีการ์ด Stubber Hickey (ดูหน้า) มีรัศมีโค้งเล็ก 10°, 22°, 30°, 45°, 60°

\[r' = 6d + \frac{d}{2} \]

\[l = \frac{\pi r'}{4} = \frac{\pi r'}{2} \]

\[l = 1.57 r' \]

\[l = 1.57 \times (6d + d) \]

\[l = 10d \]

\[R = \text{รัศมีความโค้งพลิกตามแยก} \]

\[r' = \text{รัศมีความโค้งจากจุดศูนย์กลางถึงก้านกล้า} \]

\[d = \text{เส้นผ่านศูนย์กลางภายใน} \]

ในทางปฏิบัติ

เครื่องวัดรัศมีที่มีความกว้าง เร่งจะปรับขนาดเป็นเส้นผ่านศูนย์กลางของกล้า ตรงกัน
2. การทัศน 90° ขณะที่จุดปลายสายด้วย Stubby Hickey ปั่นทับ 10° พอ 1 ช่อง

2.1 ใช้ตารางส่วนเจริญ

จากรูป แสดงว่า หากต้องวางร้อยกิโลเมตร ณ 1" 3", 3", 1" ตามลำดับ

<table>
<thead>
<tr>
<th>ระยะส่วน</th>
<th>1" Conduct or EMT</th>
<th>3" Conduct or EMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Run</td>
<td>3/8"</td>
<td>3/2"</td>
</tr>
<tr>
<td>2nd Run</td>
<td>3/4"</td>
<td>2"</td>
</tr>
<tr>
<td>3rd Run</td>
<td>1"</td>
<td>1 1/8"</td>
</tr>
<tr>
<td>4th Run</td>
<td>1 3/4"</td>
<td>1 3/8"</td>
</tr>
</tbody>
</table>

ระยะห่างระหว่างระยะซ้ำของ A-B แสดงส่วนที่ด้านบน

ระยะส่วน 1 = 3/8" (0.95 ซม.) ขนาดหีบ ดูข้าง

ระยะส่วน 2 = 7/8" (2.22 ซม.) ขนาดหีบ ดูข้าง

ระยะส่วน 3 = 1 1/8" (2.86 ซม.) ขนาดหีบ ดูข้าง

ระยะส่วน 4 = 1 3/4" (3.175 ซม.) ขนาดหีบ ดูข้าง
ประยุทธ์โภคภูษณ์ภูษณ์ หน้า 197

เรื่อง เครื่องมือและการท่อ

ตาราง ช่วงไฟฟ้า

หน่วยการสื่อ เทิ้วลูกสัตว์

วารัชยานิกาย กายภาพ

จานข้อที่ 6

ประกาศที่ไม่มากกับที่ตั้งแทบ A นั่น G จะแสดงในดีไม่แย่ระยองเท่าทันใด

ผลัก การท่อStubber Hickey บังคับ 10° เว็งกัดบรรจุ A แล้ววิ่งลง ๆ กัดขึ้นละ

10° จนถึง G จะได้モ่ 90° วางที่พื้นที่ตามที่ทำการ

2.2 ใช้กัดที่วางแผนถูกต้อง

เนื่องจากที่พื้นที่ในการกัดต่างทั่วไปก็มี เมื่อถึงที่พื้นที่เกณฑ์กว่าในตาราง

จงจำเป็นต้องใช้กัดที่วางแผนถูกต้องตามความ

ต้องวาง ผลักการท่อStubber Hickey บังคับ 10°

(junque ไม่มีการท่อ)

(Scale 1:75)

\[X_1 = \frac{(D_1 + D_2)}{2} + k \]

\[X_2 = \frac{(D_2 + D_3)}{2} + k \]

จากสมการ \(R = 6D \)

(N.E.C)

\[D = \text{เส้นผ่าศูนย์กลางของท่อที่จะท่อ} \]

\[r' = 6D + \frac{D}{2} \]

(วัชมีท่อกลางของท่อ)
\[1 = \frac{\pi r'}{2} \text{ (ความยาวของทดสอบที่มีมุม 90°)} \text{ ซม.} \]

\[X_1 = \frac{(D_1 + D_2)}{2} + K \text{ ระยะระยะทางของทดสอบ} \]

\[K = \frac{\text{คาดหัวของระยะทางระหว่างฝั่งสูงกับฝั่งต่ำ} \times \text{ฝั่งสูง} \times \text{ฝั่งต่ำ}}{4 \text{ ซม. สำหรับทดสอบ} \times \frac{1}{2} \text{ ซม. ใช้บิด C-Channel ที่คลุม U-Clamp สำหรับทดสอบขนาด} \times \frac{1}{2} \text{ ที่คลุมสำหรับ SQUARE BOX หรือ Handy Box ที่มียาว} \]

ระยะทางระหว่างเส้นที่ผ่านกลางของทดสอบ

ระยะทางขั้นต่ำของ Box เป็นขั้นต่ำ ดังรูป

วิธีทำ ใช้ Stubber Hickey บังคับ 10 นิ้ว

1. เสียบที่ 1 ขนาด ต่ำ 1 นิ้ว วางต่อเนื่อง 9 ส่วน 10 จุด

\[1 = 26 \text{ cm.} \]

\[1 = 2.89 \text{ cm.} \]
หากความยาวของทองส่วนที่จะขาด เป็น 90° (1)

สูตร \[l = \frac{\pi r'}{2} \quad \left(\frac{\pi}{7} = 22 \right) \]

\[= \frac{\pi}{2} \cdot \frac{(6D + D)}{2} \]

\[= \frac{\pi}{2} \cdot \frac{6 \times 2.54 + 2.54}{2} \]

\[= 25.9 \quad \text{Cm} \]

\[l = 26 \quad \text{Cm} \]

แบ่งเป็น 10 จุด ระยะจุด 1 - 2 = \[\frac{26}{9} \]

\[= 2.89 \quad \text{Cm} \]

แล้วทำการตัดพื้นเรื่อยไป 1 传奇游戏Stubber Hickey นำที่ 10 ทุกจุดจนถึงจุดสุดท้ายเพื่อจุดที่ 10

2. เลือกที่ 2 ขนาด \(\varnothing 2" \) แบ่งออกเป็น 9 ส่วน 10 จุด

\[l = 38.2 \quad \text{cm} \]

\(\varnothing 2" \)

\[1 2 3 4 5 6 7 8 9 \]

\[1 2 3 4 5 6 7 8 9 \]

\[4.24 \quad \text{cm} \]

หากความยาวของทองส่วนที่จะขาด เป็น 90° (1)

\[r' = \frac{6D + D}{2} \]

ระยะทางระหว่างทอง ที่\[x_1 = \frac{(D_1 + D_2)}{2} + k \quad (k = 4 \text{Cm}) \]
วัตถุความโค้งของทองต่ำที่ 2 ได้ที่สุด
\[l = \frac{r' + x_1}{2} \]
แปลงเป็น 10 จุด ระยะ \(r' \) ได้ \(31.9 \) cm
\[= \frac{4.24}{9} \]

3. เส้นที่ 3 ขนาด 2" แปลงเป็น 9 ตัว 10 จุด

\[1 = 52.34 \text{ cm} \]

หาความยาวของทองต่ำที่จะทำ 90° (1)
วัตถุความโค้งของทองต่ำที่ 3 ได้ที่สุด
\[l = \frac{r' + x_1 + x_2}{2} \]
แปลงเป็น 10 จุด ระยะ \(r' \) ได้ \(52.34 \) cm
\[= \frac{5.82}{9} \]

แล้วนำการพันลวดจุด 1 ด้วย Stubber Hickey บังคับ 10° ทุกจุดจนถึงจุดสุดท้ายที่ 1
OFFSET

ทำการทดสอบเปลี่ยนระดับการพักดินแบบค่าอย่างน้อย เนื่องจากแนวไว้พักดิน การผ่านสภาวะที่เปลี่ยนแปลงผลกระแทกตัว ได้แก่ Box อุปกรณ์ไฟฟ้า เช่น สวิชนิ, เครื่อง, อุปกรณ์พักดินที่ควบคุมระบบไฟฟ้าอื่น ๆ เป็นต้น

การทดสอบ (OFFSET)

สามารถปรับให้ได้กุมสูตรในตาราง

<table>
<thead>
<tr>
<th>ความสูง OFFSET (Offset Depth)</th>
<th>ค่าคงที่ (Constant Multiplier)</th>
<th>ระยะทางระหว่างจุดพักดิน (Distance Between Bends)</th>
</tr>
</thead>
<tbody>
<tr>
<td>มุม (ANGLE)</td>
<td>ค่าคงที่ (Multiplier)</td>
<td>หลักของน้ำหนักบรรทุกสูงสุดของ OFFSET (shrink per inch of offset depth)</td>
</tr>
<tr>
<td>10° × 10°</td>
<td>6</td>
<td>$\frac{1}{16}$ นิ้ว</td>
</tr>
<tr>
<td>$22\frac{1}{2}$ × $22\frac{1}{2}$</td>
<td>2.6</td>
<td>$\frac{3}{16}$ นิ้ว</td>
</tr>
<tr>
<td>30° × 30°</td>
<td>2</td>
<td>$\frac{1}{4}$ นิ้ว</td>
</tr>
<tr>
<td>45° × 45°</td>
<td>1.4</td>
<td>$\frac{2}{8}$ นิ้ว</td>
</tr>
<tr>
<td>60° × 60°</td>
<td>1.2</td>
<td>$\frac{1}{2}$ นิ้ว</td>
</tr>
</tbody>
</table>

วิธีการทดสอบ OFFSET

ค่าของการทดสอบ OFFSET ยังชั่วพัก 9 นิ้ว, 6 นิ้ว และ 3 นิ้ว มุมละ 30 องศา

จากสูตร ระยะทางระหว่างจุดพักดิน = ความสูง OFFSET × คาบเดลักที่

1. สูงจากพักพื้น 9''

![Diagram](image-url)
แนวทาง

จากรูป X ถึง Y = 9 x 2
= 18"

ระยะถึง Y หลังเมื่อ X ยื่น
= 9 x 1
1/8
= 2 1/8"
หลังกิจ Offset

2. สูงจากพื้น 6" ที่มี 30°

ๆ где

จุด Y ยื่นเมื่อ X ยื่น = 6 x 1" = 1 1/4"
หลังกิจ Offset

3. สูงจากพื้น 3" ที่มี 30°

ๆ где

จุด Y ยื่นเมื่อ X ยื่น = 3 x 1" = 3/4"
หลังกิจ Offset
หาขนาด ทัศน OFFSET ยักษ์ 10" มุม 45° (ใช้คำจากตาราง)

LOCATING THE FIRST BEND
WHEN MAKING A 45° OFFSET

จากสูตร
ระวางระหว่างวงจรคั้นที่ = ความสูง OFFSET × ความเล็กที่

= 10
× 1.4
= 14 นิ้ว
ความยาวของท่อส่งที่ตัด OFFSET = 10 × \(\frac{3}{8}\) นิ้ว
= 3\(\frac{3}{4}\) นิ้ว

นอกจากนี้ สามารถหา OFFSET โดยใช้คำจากสูตรในตารางแล้ว การเลือกมุมส่วนที่มุมการคั้น OFFSET ให้มั่นใจว่ามุมของระยะ OFFSETที่สามารถทำได้จากตาราง
Zip Guide ตามอาจ
จากตาราง ZIP GUIDE สามารถเลือกใช้ตามจำนวนการเปลี่ยนระดับ (ความสูงของ OFFSET)
ดังนี้
1. ความสูง OFFSET ตั้งแต่ 1 นิ้ว ลงมาควรเลือกมุมกระแทบ (OFFSET) 10 องศา
2. ความสูง OFFSET ตั้งแต่ 1-2 นิ้ว ควรเลือกมุมกระแทบ (OFFSET) 22 \(\frac{1}{2}\) องศา
3. ความสูง OFFSET ตั้งแต่ 3-4 นิ้ว ควรเลือกมุมกระแทบ (OFFSET) 30 องศา
4. ความสูง OFFSET ตั้งแต่ 5-10 นิ้ว ควรเลือกมุมกระแทบ (OFFSET) 45 องศา
OFFSET

FORMULA:
Offset Depth \times \text{Multiplier} = \text{Distance Between Bends}

EXAMPLE:
To offset under this 10" beam:

1. Select angle of bends you prefer

<table>
<thead>
<tr>
<th>Angle</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>22½°</td>
<td>30° 45° 60°</td>
</tr>
</tbody>
</table>

2. Multiply offset depth by proper Constant Multiplier

<table>
<thead>
<tr>
<th>Offset Depth</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

3. Depending on the angle of bends, the distance between bends for a 10" offset is...

<table>
<thead>
<tr>
<th>Angle</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>22½°</td>
<td>30° 45° 60°</td>
</tr>
</tbody>
</table>

| Shrink Column above indicates where to place the first mark. The 10" offset illustrated (with 45° bends) would shorten the conduit 10 x 3/8" or 3-3/4". Therefore place 1st mark 3-3/4" beyond the edge of beam to allow for this shrink.

NOTE: This guide is the greatest "helper" a Wireman ever had...it works for any make of Bender, any Hickey, and Power Bending Machine on any size or type of Conduit, Surface Metal Raceways, E.M.T. or Iron Rod.

WITH 22½° BENDS

<table>
<thead>
<tr>
<th>Offset Depth</th>
<th>Place Two Markers on Conduit</th>
<th>Shrink Table (Conduit Shortens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>2-5/8" apart</td>
<td>3/8"</td>
</tr>
<tr>
<td>2"</td>
<td>5-1/4" apart</td>
<td>3/8"</td>
</tr>
<tr>
<td>3"</td>
<td>7-2/4" apart</td>
<td>5/8"</td>
</tr>
<tr>
<td>4"</td>
<td>10-1/2" apart</td>
<td>7/8"</td>
</tr>
<tr>
<td>5"</td>
<td>13" apart</td>
<td>11/16"</td>
</tr>
<tr>
<td>6"</td>
<td>15-1/2" apart</td>
<td>1-1/8"</td>
</tr>
<tr>
<td>7"</td>
<td>18-1/2" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>8"</td>
<td>20-3/4" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>9"</td>
<td>23-1/2" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>10"</td>
<td>26" apart</td>
<td>1-7/8"</td>
</tr>
</tbody>
</table>

WITH 30° BENDS

<table>
<thead>
<tr>
<th>Offset Depth</th>
<th>Place Two Markers on Conduit</th>
<th>Shrink Table (Conduit Shortens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>2-3/4" apart</td>
<td>3/8"</td>
</tr>
<tr>
<td>2"</td>
<td>5-1/2" apart</td>
<td>3/8"</td>
</tr>
<tr>
<td>3"</td>
<td>7-1/2" apart</td>
<td>5/8"</td>
</tr>
<tr>
<td>4"</td>
<td>10-1/2" apart</td>
<td>7/8"</td>
</tr>
<tr>
<td>5"</td>
<td>13" apart</td>
<td>11/16"</td>
</tr>
<tr>
<td>6"</td>
<td>15-1/2" apart</td>
<td>1-1/8"</td>
</tr>
<tr>
<td>7"</td>
<td>18-1/2" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>8"</td>
<td>20-3/4" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>9"</td>
<td>23-1/2" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>10"</td>
<td>26" apart</td>
<td>1-7/8"</td>
</tr>
</tbody>
</table>

WITH 45° BENDS

<table>
<thead>
<tr>
<th>Offset Depth</th>
<th>Place Two Markers on Conduit</th>
<th>Shrink Table (Conduit Shortens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>2-1/2" apart</td>
<td>3/8"</td>
</tr>
<tr>
<td>2"</td>
<td>5-1/2" apart</td>
<td>3/8"</td>
</tr>
<tr>
<td>3"</td>
<td>7-1/2" apart</td>
<td>3-1/8"</td>
</tr>
<tr>
<td>4"</td>
<td>10-1/2" apart</td>
<td>5/8"</td>
</tr>
<tr>
<td>5"</td>
<td>13" apart</td>
<td>3-7/8"</td>
</tr>
<tr>
<td>6"</td>
<td>15-1/2" apart</td>
<td>1-1/4"</td>
</tr>
<tr>
<td>7"</td>
<td>18-1/2" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>8"</td>
<td>20-3/4" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>9"</td>
<td>23-1/2" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>10"</td>
<td>26" apart</td>
<td>1-7/8"</td>
</tr>
</tbody>
</table>

WITH 60° BENDS

<table>
<thead>
<tr>
<th>Offset Depth</th>
<th>Place Two Markers on Conduit</th>
<th>Shrink Table (Conduit Shortens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>2-1/4" apart</td>
<td>3/8"</td>
</tr>
<tr>
<td>2"</td>
<td>5-1/4" apart</td>
<td>3/8"</td>
</tr>
<tr>
<td>3"</td>
<td>7-1/4" apart</td>
<td>3-1/8"</td>
</tr>
<tr>
<td>4"</td>
<td>10-1/4" apart</td>
<td>5/8"</td>
</tr>
<tr>
<td>5"</td>
<td>13" apart</td>
<td>3-7/8"</td>
</tr>
<tr>
<td>6"</td>
<td>15-1/4" apart</td>
<td>1-1/4"</td>
</tr>
<tr>
<td>7"</td>
<td>18-1/4" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>8"</td>
<td>20-3/4" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>9"</td>
<td>23-1/4" apart</td>
<td>1-3/4"</td>
</tr>
<tr>
<td>10"</td>
<td>26" apart</td>
<td>1-7/8"</td>
</tr>
</tbody>
</table>

NOTE: The "shrink table" column tells you where to place the first mark. If bending pipe into an obstruction, place the first mark on conduit beyond the distance shown in the shrink table. If offsetting away from obstruction ignore shrik...
การตัด OFFSET ขนาดลงต่อสายหัวสวิชช์และเทอร์ม (คัดละ)

ประมาณ 4-5 เหตุผล หัวสวิชช์COLOR
ประมาณ 5-6 เหตุผล หัวสวิชช์ขนาดใหญ่

จากขั้นตอนการคำนวณยังถ้าการคำนวณระยะขั้นตอน

GAIN

ก่อนการเพิ่มขั้นตอนปลายหลังจากกั้นเป็นหมู่โค้ง 90° จะเพิ่มขั้นตอนขั้นตอน

ขึ้นอยู่กับ
1. ขนาดความโค้งลง
2. ขนาดความโค้งทางหัวที่ตัด

ตารางเพิ่มโค้งจากตาราง

<table>
<thead>
<tr>
<th>ขนาดสงครามสายรูบถังทาง</th>
<th>ขนาดความโค้ง N.E. รหัส</th>
<th>ความยาวทำเพิ่มเมื่อโค้ง 90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" (12.7 mm.)</td>
<td>4" (101.6 mm.)</td>
<td>25/8" (66.7 mm.)</td>
</tr>
<tr>
<td>3/4" (19.1 mm.)</td>
<td>5" (127.0 mm.)</td>
<td>31/4" (82.6 mm.)</td>
</tr>
<tr>
<td>1" (25.4 mm.)</td>
<td>6" (152.4 mm.)</td>
<td>4" (101.6 mm.)</td>
</tr>
<tr>
<td>1 1/2" (31.8 mm.)</td>
<td>8" (203.2 mm.)</td>
<td>55/8" (142.9 mm.)</td>
</tr>
</tbody>
</table>
ตัวอย่าง ตั้งการตั้งอุทกว่า 1 นิ้ว ยาว 45" แล้ว ใส่โซ่ใหญ่จากความ 15"

จากวัดความสูงแล้วทดที่จุด 2

 rotating 4" (ความยาวข้างซ้าย) ซ้ายของตัวยงตั้งกับ OFFSET ก่อน
เพื่อเช็ค BOX หากความยาวของตัวอย่างเกินกว่าจะทำให้ไม่สามารถตัดด้าน
ใด และอาจต้องเปลี่ยนตัวเครื่องเข้า

จะเท่ากับความยาวตั้งไทยในขณะ GAIN จะทำให้ความยาวของตัวที่ตั้ง

90° เท่ากับความยาว ตั้งถังนั้น พอที่จะให้มั่นใจกับการตัดด้านที่ตั้ง GAIN ออกตามตารางที่กำหนด

เมื่อ \(x = 30" \) , \(y = 15" \) ความยาว 45"

\[
GAIN = (x + y) - 4" \\
= 45 - 4 \\
= 41"

. ความยาวของที่ใช้คั้นจริง = 41"
การตัดทอง 90 องศา

การตัดทอง 90° จำเป็นจะต้องทั้งกระดาษความหนาของ Bender (TAKE - UP) ดังกล่าวซึ่งจะทำให้ความยาวในแนวตั้งสูงกว่าความเป็นจริง ขณะ TAKE-UP แต่งใน ตารางข้างล่าง

BENDER TAKE-UP

<table>
<thead>
<tr>
<th>Size of Stubs</th>
<th>Take-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" E.M.T.</td>
<td>5"</td>
</tr>
<tr>
<td>3/4" E.M.T.-1/2" Rigid</td>
<td>6"</td>
</tr>
<tr>
<td>1" E.M.T.-3/4" Rigid</td>
<td>8"</td>
</tr>
<tr>
<td>1-1/4" E.M.T.-1" Rigid</td>
<td>11"</td>
</tr>
</tbody>
</table>

Measure to Arrow

Hockey TAKE-UP FOR STUBS

<table>
<thead>
<tr>
<th>Size of Stubs</th>
<th>Take-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2" Rigid...One Bite...5"</td>
<td></td>
</tr>
<tr>
<td>3/4" Rigid...One Bite...7"</td>
<td></td>
</tr>
<tr>
<td>1" Rigid...Two Bites...10"</td>
<td></td>
</tr>
<tr>
<td>1-1/4" Rigid...Two Bites...11"</td>
<td></td>
</tr>
</tbody>
</table>

USE ARROW AS BASE FOR TAKE-UP CALCULATIONS.

FOR COMPLETE HOCKEY DETAILS SEE NEXT PAGE

STUB LENGTHS

ตัวอย่างวิธีการตัดทอง 90°

ลองที่ตัดทอง EMT เส้นทางที่ตัดกันขานค้น 3" ที่ปลายของแต่ละหัวแม่พันกันใหญ่ 14" โดยใช้เครื่องมือตัดทองข้างโพลิฟิลวิป (Standard Model)
ลำดับขั้น:

1. วัดความยาวจากปลายทองคำยาว 14" ห่างครึ่งหน่วยไว้

 ![Diagram](image1)

 $L = 14"$

 $\phi \frac{3}{4}$

2. จากตาราง Bender take-up ทองเหลือง $\phi \frac{3}{4}$ เมื่อถึง 90 อองซ์ ระยะ take-up ของ Bender เท่ากับ 6" ดังนั้นให้ถักระยะ take-up ของ Bender ออกได้ 14" - 6" = 8"

3. วัดจากปลายทองคำยาว 8" ห่างครึ่งหน่วยไว้

 ![Diagram](image2)

 $L = 14"$

 $\phi \frac{3}{4}$

 "take-up" 6"

4. วางครึ่งมือถักทองคำทำวัฏฐุการครั้งแรกยาว 8" ตามขั้น 3

 ![Diagram](image3)

5. กดด้าน Bender ให้ทองเหลืองในแนวนั้นลดลงจนกว่าระยะจากทองคำ 14" ตามขั้นกว่า

 ![Diagram](image4)

 $L = 14"$

 $\phi \frac{3}{4}$

 6"
<table>
<thead>
<tr>
<th>ประธานผู้דוןผู้มีอำนาจหน้าที่</th>
<th>ช่างไฟฟ้า</th>
<th>หน้า</th>
</tr>
</thead>
</table>
| ที่สูงเสียดใหญ่ | ช่างไฟฟ้า | 210 |}

เหตุผลในการใช้ส่วนขยายสายไฟ:

1. สำหรับเครื่องใช้ไฟฟ้าพร้อมที่มีไฟ_RGB หรือเครื่องใช้ไฟฟ้าในที่จะต่อ
2. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
3. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
4. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
5. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
6. และสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
7. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
8. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
9. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
10. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
11. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
12. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
13. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน
14. สำหรับสายไฟที่มีวง路过คล้ายกัน อาจใช้เป็นตัวเชื่อมต่อที่มีไฟ_RGB หรือสายไฟที่มีวง路过คล้ายกัน

จากการติดตั้งสายไฟ:

1. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
2. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
3. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
4. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
5. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
6. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
7. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
8. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
9. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
10. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้

จากการติดตั้งสายไฟ:

1. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
2. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
3. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
4. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
5. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
6. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
7. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
8. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
9. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
10. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
11. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
12. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้

ในการติดตั้งสายไฟ:

1. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
2. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
3. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
4. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
5. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
6. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
7. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
8. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
9. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
10. การติดตั้งสายไฟต้องให้การติดตั้งเป็นที่มีความปลอดภัยและมีความถูกต้องตามที่ใช้
ใบงาน

ได้ผล ช่างไฟฟ้า

หน่วยงาน ศูนย์เหล็กและการทัพ

จำนวน ที่ 6

หน่วยงาน ศูนย์เหล็กและการทัพ

จำนวน ที่ 1

ก่อนหน้านี้ จัดปฏิบัติการเก็บหลอขยะไฟฟ้า ตามแบบภาพพาน A ของแผนปฏิบัติการเก็บขยะของ

งานหมายเลข 6 (การตัด 90° ปลายปลายขั้นนำและตัด OFFSET เชื่อม Box)

ผู้อ้างอิง

รับ รุ่น กลุ่ม쩍สีวัสดุกันเคลือบ สีขาว แบบ Handy Box

C - พอต Coupling

การกระทำในงานดังกล่าว

1. ตัด EMT ขนาด ø 1" ø 3/4
2. strap ส่องชุด
3. พอต EMT (Coupling)
4. สกุกร้าวทับยึด Strap และ Box

เครื่องมือที่ใช้

1. Bender ตัด EMT ø 1" และ ø 3/4
2. ปากกาจับต้อน
3. เลี้ยงโลหะ
4. Reamer
5. ตะไบ
6. ชุดใบตัด
7. รถ
8. ปิกฆา
9. ผัน
10. ปลายน้ำ
11. ประจุเป็นนำ (Water-pumper)
วัสดุประสงค์
เพื่อให้ผู้บังคับการสังกัดสามารถปฏิบัติการดังนี้
1. ตัดท่อขนาด 90 องศา ขนาดเล็กขนาดเล็กโดย
2. ตัดท่อ OFFSET เข้าต่อส่งสายอิเล็ก
3. เลือกใช้ขนาดของขดหยก EMS ได้อย่างเหมาะสม

เครื่องมือ, อุปกรณ์, แหล่งศูนย์ (ดูจากรูปงาน)

<table>
<thead>
<tr>
<th>ขั้นตอนการปฏิบัติงาน</th>
<th>คำอธิบาย</th>
<th>ข้อควรระวัง</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ทิ้งแบบจากใบงาน</td>
<td>1. เครื่องมือ, เครื่องมือ, วัสดุและอุปกรณ์ ไทยทิ้งแบบจากใบงาน</td>
<td>1. ไม่ต้องมีการใช้การแก้ไขแบบแปลน ซ้ำๆกัน หรือการรีบพิมพ์แบบแปลน</td>
</tr>
<tr>
<td>2. ทิ้งหมดแบบบนแผ่น</td>
<td>1. ใช้กลับมาแล้วทิ้งแบบจากใบงานบนแผ่น</td>
<td></td>
</tr>
<tr>
<td>3. ทิ้งแบบ OFFSET เข้า Handy Box</td>
<td>1. นำทิ้งแบบ วางทิ้งแบบigraphy และทิ้งแบบการทำแบบแปลน ต่างหาก ตามวิธีการใบงานเดิม</td>
<td></td>
</tr>
</tbody>
</table>

2. เลือกแบบจากขนาดท่อ วางและจั่งที่การระบายน้ำ
 ทั้งด้าน Reamer ตามรูปภาพทาง

หลักสูตร ช่างไฟท่า หมายเลขตัวเลือก เล็กสารสูตรทาง
หน่วย 216
หน่วยการฝึก เล็กสารสูตรทาง
หัวหน่วยเช่า การทัด
งบประมาณที่ 6 งบดี 1
3. นำ Box มาวางที่แนวนอนทำให้ค่า Offset เข้า Box ตามลำบับขึ้นไปตามขั้นตอน

- เมื่อทำวงกลมทาง ปลายทิศค่า Offset จะคง
 ขนาดตามที่ ต้อง

Pipe should be parallel

- เมื่อเทียบกันข้อที่รับรู้ได้ Box แล้วจะสามารถสอด
 เข้า Box ได้พอดีตามรูป
- และนำเข้ากระบอกได้โค้งดูบ

1. ความยาวประมาณ 4-5 เท่าของ ห หอหรือ ประมาณ 5-6 เท่าของ ห หอที่มีมากที่สุด

4. ติดตั้งอุปกรณ์

1. นำ Box ต่าง ๆ เขาติดตั้งในตำแหน่งที่เหมาะสม บนผนัง สมมติมีงานโดยใช้จุกกลวงของอุปกรณ์ เป็นหลัก
2. หันสองข้าง Box หรืออุปกรณ์กว้างไหม

5. ทำให้ 90° ขนาดนั้น

6. หันกลับ รถเข็น ลำตัว ถักข้าง Box ด้าน ๆ

1. นำที่นั่งก้าวขึ้นชั้นล่าง ลำตัว ลำตัว Box แถว

ทำให้กระชับ Box ถักด้านล่าง "lock nut" และ "bushing"
2. ตั้ง Lock nut ให้แน่นกับตัวแปลงแสง

7. ยืดหยุ่นข้อ Strap

1. ทำกำลังสอดคล้อง Strap ให้ระยะทางจาก Box ถึง Strap ประมาณ 30 ซม. ระยะทางจาก Strap-Strap ประมาณจากตัวสุดท้ายไม่เกิน 2 ม.
การตัดคำขามสี่กั้นด้าน

1. คำแบบ 3 โค้ง (Three Bend Saddles)
2. คำแบบ 4 โค้ง (Four Bend Saddles)

1. คำแบบ 3 โค้ง (Three Bend Saddles)

ใช้คำขามสี่กั้นด้านที่มีความสูงไม่เกิน 6 นิ้ว และความกว้างไม่มากกว่า 3 นิ้ว
จะเป็นแน่นอนต่าง ๆ ในด้านอากาศ สามารถกำหนดระยะห่างการตัดคำขามสี่กั้น

สูตร ระยะห่างระหว่างชุมโค้ง (L) = \(\frac{1}{2} L \times \cos \theta \)

คำขามยาว กำลังระยะขุ่นโค้ง (L)

\[45^\circ \text{BEND AT "A"} \]

\[22\frac{1}{2}^\circ \text{BENDS AT "B" and "C"} \]

\[2\frac{1}{2} \times 4" = 10" \text{ BETWEEN BENDS} \]
รายละเอียด นั่นจากหลักการทั่วไปแล้ว ความยาวของระบายที่เอาจะต้อง $\frac{3}{16}$ ของทุก ๆ ความสูงสิ่งกีฬาวาง 1 นิ้ว ดังนั้นจะต้องระบุระยะ L ความ $\frac{3}{16}$ ของความสูงสิ่งกีฬา ยาว 1 นิ้ว

วิธีที่ดีที่สุดที่ทำได้จะแบบ 3 โค้ง

\[2\frac{1}{2} \times 3'' = 7\frac{1}{2}''\] BETWEEN BENDS

\[2\frac{1}{2} \times 2'' = 5''\] BETWEEN BENDS

เนื่องจากความระยะจุดที่ป้อมขอบแล้ว
1. ทำพิษจุด A กลับ ทำความเย็นทุกหัว A รวงที่ตัด 45 องศา แต่ละหัวเย็นแยกพิษจุด A เป็น 60 องศา

STEP-TWO USE THE TABLE BELOW TO LOCATE MARKS "B" AND "C".

<table>
<thead>
<tr>
<th>Saddle Depth</th>
<th>Place Marks "B" and "C" each way from Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>2-1/2"</td>
</tr>
<tr>
<td>2"</td>
<td>5"</td>
</tr>
<tr>
<td>3"</td>
<td>7-1/2"</td>
</tr>
<tr>
<td>4"</td>
<td>10"</td>
</tr>
<tr>
<td>5"</td>
<td>12-1/2"</td>
</tr>
<tr>
<td>6"</td>
<td>15"</td>
</tr>
</tbody>
</table>

2. ทำพิษจุด B เป็น 22 1/2 องศา ทำพิษจุด A เป็น 45 องศา และทำพิษจุด A เป็น 60 องศา
 ทำพิษจุด B เป็น 30° วางต่อกันจนเป็นวงกลม
3. ทำพิษจุด C เช่นเดียวกับ 2

2. ทำแบบ 4 โฉนด (Four Bend Saddle) ใช้ทำพิษจุดจุดเช่นนี้เพื่อให้ผู้ใช้งานมีความแข็งและความหนา
 เช่น คาน (Beam) Pull box, Air Duct ฯลฯ สามารถทำระบายจุดที่ทำให้จากพิษจุด
 และควรตรวจสอบ

PRECISION OFFSET INSTRUCTIONS

<table>
<thead>
<tr>
<th>BENFIELD OFFSET FORMULA</th>
<th>BENDING TIPS</th>
<th>ZIP GUIDE FOR OFFSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Depth</td>
<td>Constant Multiplier</td>
<td>Distance Between Ends</td>
</tr>
<tr>
<td>ANGLE</td>
<td>MULTIPLIER PER INCH OF DEPTH</td>
<td></td>
</tr>
<tr>
<td>10° x 0°</td>
<td>6</td>
<td>1 1/8" per inch</td>
</tr>
<tr>
<td>22 1/2° x 22 1/2°</td>
<td>2.6</td>
<td>3/16" per inch</td>
</tr>
<tr>
<td>30° x 30°</td>
<td>2.0</td>
<td>1/4" per inch</td>
</tr>
<tr>
<td>45° x 45°</td>
<td>1.4</td>
<td>3/8" per inch</td>
</tr>
<tr>
<td>60° x 60°</td>
<td>1.2</td>
<td>1 1/2" per inch</td>
</tr>
</tbody>
</table>

EXAMPLE:
Offset 5" deep with 45° bends.

5" X 1.4 = 7"

1. Place marks 7" apart.
2. Make a 45° bend at each mark.

1. **START BENDS AT ARROW ON TOOL.**
2. **ON FLOOR BENDS A STRAIGHT UP HANDLE (VERTICALLY TO FLOOR) INDICATES A 30° BEND.**
3. **RIM NOTCHES INDICATE THE CENTER OF A SADDLE OR THE CENTER OF A 45° BEND.**
4. **WITH TOOL IN AIR APPLY HAND PRESSURE CLOSE TO THE GROOVE FOR GREATER ACCURACY.**
5. **SPECIFY BENDER HANDLES MADE OF EXTRA HIGH STRENGTH STEEL.**

<table>
<thead>
<tr>
<th>ZIP GUIDE FOR OFFSETS</th>
<th>BENFIELD SPEED TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Depth Inches</td>
<td>Distance Between Ends</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5 1/4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>8 1/2</td>
</tr>
<tr>
<td>7</td>
<td>9 3/4</td>
</tr>
<tr>
<td>8</td>
<td>11 1/4</td>
</tr>
<tr>
<td>9</td>
<td>12 1/2</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

Patented U. S. A. — Canada © J. D. Benfield 1975
คัวอย่าง ตัดแบบ 4 โดย ความยาวยาวขวางสิ่งกีฬากวางระหว่าง 5" × 8" ใช้มุมตัด 45°
จากสูตร ใบตาราง
ระยะทางระหว่างจุดตัด (L) = ความสูง Offset (D) × ค่าคงที่
= 5 × 1.4
= 7 นิ้ว

ที่ติดจะสัมผัส 3/8" ของทุก ๆ ความสูงสิ่งกีฬาขวาง 1 นิ้ว ค่าคงที่จะต้องยาวระบาย L
ด้วย 3/4" ของความสูงสิ่งกีฬาขวาง ทุก ๆ 1 นิ้ว
คำสั่ง นางปฏิบัติการคึกฤทธิ์ รถยนต์ไฟฟ้าตามแบบพื้นฐาน B ของแผนปฏิบัติการคืบหน้าสายขยายงานยอดที่ 6 (การก่อสร้างงานและขามเล็กกีฬารวบ)

ขั้นตอน

1. x_{10}, x_{17} - กล่องสวิตช์หน้ากิ่ง Switch แบบ Handy Box
2. x_{11}, x_{12}
3. x_{13}, x_{14} - กล่องหลอดสายที่ต่อด้วยโคมแบบ Octagon Box
4. x_{15}
5. x_{16} - กล่องหลอดสายและแยกสายแบบ Square Box

อุปกรณ์ที่ใช้ในการติดตั้ง

1. ทอง EMT ขนาด $\frac{1}{2}$, $\frac{3}{4}$
2. Strap 2 ชุด
3. สำหรับกับพยัญพยา, Strap และ Box

เกณฑ์สั่งซื้อ

1. Bender ทอง EMT $\frac{1}{2}$, $\frac{3}{4}$
2. ปลายการติดตั้ง
3. เจาะย่อยไฟ
4. Reamer
5. ตะปู
6. ชุดไขควง
7. คอน
8. บัตตา
9. คิกซอ
10. ตัดแม่
11. ประเภทพมอ (Water - Pumpplier)
<table>
<thead>
<tr>
<th>ขั้นตอนการปฏิบัติงาน</th>
<th>ที่มา</th>
<th>หมายเหตุ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ทำลายแบบจ้างใบงาน</td>
<td>ทำลายแบบจ้างใบงาน</td>
<td>งานย่อยที่ 6 งานที่ 1</td>
</tr>
<tr>
<td>2. การตรวจสอบข้อมูล</td>
<td>การตรวจสอบข้อมูล</td>
<td>ทำลายแบบจ้างใบงาน</td>
</tr>
<tr>
<td>3. การตรวจสอบข้อมูล</td>
<td>การตรวจสอบข้อมูล</td>
<td>ทำลายแบบจ้างใบงาน</td>
</tr>
<tr>
<td>4. การตรวจสอบข้อมูล</td>
<td>การตรวจสอบข้อมูล</td>
<td>ทำลายแบบจ้างใบงาน</td>
</tr>
<tr>
<td>5. การตรวจสอบข้อมูล</td>
<td>การตรวจสอบข้อมูล</td>
<td>ทำลายแบบจ้างใบงาน</td>
</tr>
<tr>
<td>6. การตรวจสอบข้อมูล</td>
<td>การตรวจสอบข้อมูล</td>
<td>ทำลายแบบจ้างใบงาน</td>
</tr>
<tr>
<td>7. การตรวจสอบข้อมูล</td>
<td>การตรวจสอบข้อมูล</td>
<td>ทำลายแบบจ้างใบงาน</td>
</tr>
</tbody>
</table>

ทำการตรวจสอบข้อมูลตามลำดับการดำเนินงาน

1. การตรวจสอบข้อมูลตามลำดับการดำเนินงาน

2. การตรวจสอบข้อมูลตามลำดับการดำเนินงาน

3. การตรวจสอบข้อมูลตามลำดับการดำเนินงาน

4. การตรวจสอบข้อมูลตามลำดับการดำเนินงาน

5. การตรวจสอบข้อมูลตามลำดับการดำเนินงาน

6. การตรวจสอบข้อมูลตามลำดับการดำเนินงาน

7. การตรวจสอบข้อมูลตามลำดับการดำเนินงาน
การคัดพอ 90 องศา จักกลับวงกลม (BACK - TO - BACK BENDS)

เปลี่ยนการคัดพอข้าง 90 องศา ห่างเพียงพอเพื่อให้คัดพอในงานแต่ละช่วงข้างละ จักกลับการคัดพอจะทำให้เสียทรายเสียชีวิต ดังนั้น วิธีการคัดพอของคัดพอจะตรงตัวเร็ว

วิธีคัดพอ

1. คัดพอปลายตามแนวต่ำต่ำกมุมวิภาค 90°

2. วงกลมเดิมคัดพอไม่ทับอุกสวรรค์ ตรงจุดช่วงคัดพอ ขอจุดคัดพอตรงจุด 2

[Diagram showing layout and details of the bends and measurements]
3. ที่ก้อน Bender ให้ยกขาที่จะได้หักโค้ง 90° Back - To - Back ด้วยพอง

กรี เกี่ยวกับการกัด

หน่วยวิชา การกัด

จำนวนเที่ยง 6
คำสั่ง งานปฏิบัติการตังมุมร้อยสายไฟตามแบบ Back to Back เข้าบูรณาการตามแบบภาพด้าน A, C, D ประกอบเชิงรายการเช่นต่อลงด้านบน

อุปกรณ์ที่ใช้ในการกิจหน้า

1. ต้น EMT ขนาด Ø 1" , Ø 3"
2. Strap ส่งฟุ่ง
3. ต้นกระแทบกับ Strap และ Box

เครื่องมือใช้

1. Bender ตัด EMT Ø 1" และ Ø 3"
2. ปากกาจักรที่
3. เลื้อยโลหะ
4. Reamer
5. ตะกั่ว
6. ชุดใส่ลวด
7. หน่วย
8. บิทเจาะ
9. คีม
10. กลิ่มคร่อม
11. ประแจคู่บูร (Water-pumpplier)
ภาพตาม A

หุ้นหัก Back-to-Back

เว้นใจแสงสมบัติคุณ A

เท่ากับ 1 เส้น เท่ากับ

ระดับพื้น

ชื่อ พ.ร.ย. ว.ต.ป. ประกาศ 1:10
ตัวอย่างการปฏิบัติงาน

<table>
<thead>
<tr>
<th>ขั้นตอนการปฏิบัติงาน</th>
<th>สำหรับ</th>
<th>หมายเหตุ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ที่กับแบบจากใบงาน</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. กำหนดขนาดของแคน</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. ที่กับ Offset เช่น Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. ที่กับอุปกรณ์</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. ที่กับแบบ Back to Back</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. ที่กับอุปกรณ์ เช่น Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. ยึดกับด้วย Strap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

หมายเหตุ
- ที่กับแบบ Back to Back ตามลำดับการกัดใบไปซ้อน
- ที่กับอุปกรณ์ เช่น Box ตามลำดับการปฏิบัติงาน งวดที่ 1
<table>
<thead>
<tr>
<th>ใบเตรียมการสอน</th>
<th>หน้าสูตร ช่างไฟฟ้า</th>
<th>หมายเลขห้อง</th>
<th>เกณฑ์ผลสัมฤทธิ์ทั้งหมด</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>เรื่อง การจับยึดตัว</td>
<td>การจับยึดตัว</td>
<td></td>
<td></td>
</tr>
<tr>
<td>หัวข้อวิชา</td>
<td>จำนวนกิจกรรม</td>
<td>เวลา</td>
<td>จำนวน</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

วัตถุประสงค์

เพื่อให้ผู้เรียนเกิดความรู้จะได้:
1. อาบัปกั้นชายช่อง ลูกกระดาษพับยึดตัวให้ถูกต้อง
2. อาบัปกั้นชายการติดตั้งและการจับยึดตัวแบบต่าง ๆ ให้ถูกต้อง

วิธีสอน

1. บรรยายประกอบการจัดทำของจริง

หัวข้อสำคัญ

1. พัก (Anchor)
2. เส้นยึด (Strap)
3. Support
4. Hanger Support
5. Racks

อุปกรณ์ช่วยสอน

1. กรรจาติ้ว 2. ใบมีด 3. เครื่องจัดข้ามที่มี
4. อุปกรณ์ช่วยช่าง

การมอบหมายงาน

1. ใบมีด

การวัดผล

หนังสืออ้างอิง
การจับปิดทองสีก่อนการตัดเป็นจะต้องใช้พุก (Anchor) ที่มีอยู่หลายชนิด แยกตามลักษณะการใช้งานโครงสร้าง

1. พุกสะอาด

สำหรับงานที่ไม่รับน้ำหนักมากนัก เจาะรูแล้วนำพุกสะอาดใส่ใบรอง และขับถี่ให้ใช้สกุญชุดกว้างลายแบบ

2. พุกโลหะ

สำหรับงานที่ต้องการใช้ความแข็งแรงมาก ใช้พุกโลหะใส่ใบรองที่เจาะไว้แล้ว จับถี่ให้ใช้สกุญชุดกว้างลายแบบ
3. พุกเข็นออก สำหรับเข็น

สำหรับงานติดตั้งบนพื้นผิวแขวน Hanging Rod จะใช้พุกเข็นสำหรับวางปลาย
เป็นเชิงลึก

พุกแขวนสามารถวางที่ผนังหรือบนพื้นสีขาว เร่งจึงต้องมิลลิ้งHangling Support ติด

สินค้าใน (Strap)

ใช้สำหรับงานเคลื่อนที่จากต่ำถึงสูง ใช้ขับเคลื่อนเฉพาะ เข็น เข้า Box
สวิตซ์คาร์บิหรือ Box เข้าควบคุม เบียดตัน

ระยะทางระหว่าง Strap กับ Strap ในครั้งแรก 2 เมตร และระหว่าง Box
gกับ Strapตัวแรกไม่ควรเกิน 30 ซม.
Support

ใช้สำหรับคีย์ท่อ ร้อยสายที่มีจำนวนหลายสาย วางไปในทางเคี้ยวนาน ประกอบด้วย 2 ส่วน

1. U-Clamps ใช้สำหรับจับท่อโดยมีสัณฐานที่เงียบไม่แน่น

U-Clamps ขนาดกลาง ๆ

2. C-Channels เป็นส่วนที่จะยึดกับแนวนอนที่พื้นหรือผนังใช้แขวน

C-Channels ขนาดกลาง ๆ
การติดตั้ง C - Channels เข้ากับผนังคอนกรีต

ลักษณะการเชื่อมต่อของ U - Clamp ร่วมกับ C - Channels

<table>
<thead>
<tr>
<th>ชื่อส่วน</th>
<th>การใช้งาน</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ความสูงของ U - Clamp</td>
</tr>
<tr>
<td>B</td>
<td>ความกว้างของ U - Clamp</td>
</tr>
<tr>
<td>D</td>
<td>ขนาดส่วนประกอบของ U - Clamp</td>
</tr>
</tbody>
</table>

ติดตั้ง U - Clamp แน่น
การติดตั้งฮันเกอร์ Hanger support

ในการติดตั้งฮันเกอร์จำเป็นต้องมีการผนังแข็งแรงที่มีการจับให้อักขระเข้าไปในผนังให้หมด เพื่อให้ฮันเกอร์เข้าร่วมกับผนังได้ ฮันเกอร์ควรจับเข้าใกล้กันที่ต่ำกว่าฮันเกอร์ต่อไปนี้ ฮันเกอร์จะมีการจับเหล็กโครงสร้างที่ต่ำกว่าฮันเกอร์ต่อไปนี้ ฮันเกอร์จะได้รับการจับที่ต่ำกว่าฮันเกอร์ต่อไปนี้

รูปแสดงการติดตั้งฮันเกอร์ Hanger support

ฮันเกอร์ Hanger Rod

U-Clamp

C - Channel

C - channel

nut

หมายเลขที่ A
ผลจากนี้ทำให้ติดตั้ง Hanger Support และยังสามารถใช้ติดตั้งอุปกรณ์อื่น ๆ เช่น Air Duct, Cable trays ฯลฯ

APPLICATION

SUPPORTING DUCT

SUPPORTING CABLE TRAYS

SUPPORTING CONDUITS

รูปภาพ B

รูปภาพ B

รูปภาพ B

กลับลักษณะการน้ำ Hanger support ในไปสิ่งนี้
RACKS (CONDUIT SUPPORT)

Allowable Static Load: 35 kg

CLAMPS ใช้ยึดคลุม HANGER ROD

CLIP ที่ยึด HANGER ROD โดย CLIP
| วัตถุประสงค์ | 1. อธิบายวงจรไฟฟ้าต่าง ๆ ในหลักสูตร
2. ปฏิบัติกิจกรรมเรียนรู้คณิตศาสตร์ Panel Board ได้
3. ทำความเข้าใจจากแบบและบอกคำตอบ ๆ จากตาราง Panel schedule |
| วิสัยทัศน์ | 1. บรรยาย
2. สรุป |
| หน่วยสังคม | 1. วงจรควบคุมแสดงไฟฟ้า 1 วงควบสัมพาร์ย์ 1 ท่า
2. วงจรควบคุมแสดงไฟฟ้า 2 วงควบสัมพาร์ย์แยกแยะแยง
3. วงจรควบคุมแสดงไฟฟ้า 1 วงควบสัมพาร์ย์ 1 ท่า พร้อมเตาบะ 1 ชุด
4. วงจรสวิตซ์ไฟได้
5. ปฏิบัติตามหลักและรอยย่อยไฟฟ้าต่อ |
| ยุทธศาสตร์ช่วยเหลือ | 1. กระดาษ
2. ใบข้อมูล
3. เครื่องเขียนเขียนชื่อ
4. ยุทธศาสตร์จิตใจ |
<p>| การมอบหมายงาน | ไฟปิล่าง |
| การติดต่อ | จากทำการปฏิบัติงาน |
| หนังสืออ้างอิง | |</p>
<table>
<thead>
<tr>
<th>เบื้องหลัง</th>
<th>วงจรไฟฟ้าสายตรง</th>
<th>เล่มรวมปัญญา</th>
<th>จำนวน</th>
</tr>
</thead>
<tbody>
<tr>
<td>วงจรไฟฟ้าสายตรง</td>
<td>วงจรไฟฟ้าสายตรง</td>
<td>เล่มรวมปัญญา</td>
<td>จำนวน</td>
</tr>
</tbody>
</table>

![Diagram Image]
<table>
<thead>
<tr>
<th>หน้า</th>
<th>หน่วยการศึกษา</th>
<th>หัวข้อ</th>
<th>วัตถุประสงค์</th>
<th>หัวข้อ</th>
<th>หัวข้อ</th>
<th>หัวข้อ</th>
<th>หัวข้อ</th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>หลักสูตร</td>
<td>ช่างไฟฟ้า</td>
<td>หน่วยการศึกษา</td>
<td>ศึกษา</td>
<td>ศึกษา</td>
<td>ศึกษา</td>
<td>ศึกษา</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>หัวข้อ</td>
<td>หัวข้อ</td>
<td>หัวข้อ</td>
<td>หัวข้อ</td>
<td>หัวข้อ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ศึกษา</td>
<td>ศึกษา</td>
<td>ศึกษา</td>
<td>ศึกษา</td>
<td>ศึกษา</td>
</tr>
</tbody>
</table>

หมายเหตุ: ภาพประกอบแสดงโครงสร้าง และวงจรไฟฟ้าที่จัดเก็บไฟฟ้า
3. วงจรควบคุมหลอดไฟ 1 ดวง ด้วยสวิตช์ 1 ตัว พร้อมเครื่อง 1 ตัว
4. วงจรควบคุมหลอดไฟ 1 ดวง ด้วยสวิทช์ 3 ทาง (สวิทช์บานไค)
ช่วง งานปฏิบัติการเก็บสายไฟรถยนต์โดยมีการใช้ต่อไปนี้

1. สวิตช์ S_1 ควบคุมหลอด E_1
2. สวิตช์ S_2 ควบคุมหลอด E_2
3. มีเครื่องปัญจ์จากพื้น 0.30 เมตร 1 จุด (X_2)
4. ตู้สายไฟที่ติดตั้งกัน 1 ตู้ ณ ฐานจากพื้น 1.00 เมตร 1 จุด (X_6)
5. ตู้สายงาลงต้น (สายลงที่นั้น) (Grounding)

ชื่อสัญลักษณ์

F_1 - จุดรับไฟหรอม Fuse

X_1, X_2 - กล่องสินทรัพย์สินทรัพย์, เคาร์์รันแนป Single gang box

X_3, X_5 - กล่องสินทรัพย์สินทรัพย์โคมไฟแบบ Octagon box

X_4, X_6 - กล่องสินทรัพย์สินทรัพย์แบบ Square box

E_1, E_2 - หลอดไฟแบบนั้นได้แบบ Incandescent lamp

S_1, S_2 - สวิตช์ควบคุมหลอดไฟแบบ 1 Way switch

P_1 - เครื่องไฟฟ้า 1 เฟส (Receptacle)

อุปกรณ์ที่ใช้ในการเคลื่อนและรองรับสายไฟ:

1. ทาง EMT ขนาด $1/2''$ 7. สายไฟฟ้า 1×1.5 mm.2 2 สาย
2. Octagon box 2 ก้อน 8. ชุดโคมไฟ 2 ชุด
3. Single gang box 2 ก้อน 9. สวิตช์ 1 ทาง 2 ตัว
4. Square box 2 ก่อน 10. Wire nut
5. Strap 16 ตัว 11. ชุดรับไฟหรอม Fuse 1 ชุด
6. สกุชย์หรือยีเคย Strap และกล่อง
ใบงาน

<table>
<thead>
<tr>
<th>หน่วยผลิตข้างโพบาท</th>
<th>หน่วยผลิตแยกภายนอกสุทธิGRAM</th>
<th>หน่วยผลิตแยกด้านข้างกัน</th>
<th>ผู้ตรวจด้านกัน</th>
<th>งานยอดที่</th>
<th>งานที่</th>
</tr>
</thead>
<tbody>
<tr>
<td>254</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

เรื่อง: วงจรไฟฟ้าสำหรับ

1. Bender รหัส EMT.3/2
2. ประแจผสม (Water-pump plier)
3. ปากกาขจัด
4. เหลี่ยมโลหะ
5. Reamer
6. ตะไคร
7. ชุดไหลด้ง
8. คอน
9. ปิปปลา
10. ตันสแตนลี่
11. พลังแม่เหล็ก
บัตรประจำตัว

การปฏิบัติงาน

1. ลายนำและอธิบายแบบไปรษณีย์จากไปรษณีย์
2. เลือกใช้เครื่องมือใด
3. ติดต่อตรงน้ำยาที่แบบไปรษณีย์จากไปรษณีย์ภายนอก
4. ติดต่อระบบไปรษณีย์โดยยังดูยังคง

เครื่องมือ, ถุงพลาสติก, และวัสดุ (ดูจากภาพ)

<table>
<thead>
<tr>
<th>ขั้นตอนการปฏิบัติงาน</th>
<th>คำอธิบาย</th>
<th>ของเครื่องมือ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ติดตั้งแบบไปรษณีย์</td>
<td>1. เครื่องมือ (มีมือและถุงพลาสติก)</td>
<td>2. เขียนบนผู้ Working</td>
</tr>
<tr>
<td>2. กำหนดหมายเลขบบผ่อน</td>
<td>1. ใช้ตัวบล็อกเครื่องคอมพิวเตอร์</td>
<td>แล้วกำหนด 2. กำหนดจำนวน</td>
</tr>
<tr>
<td>3. ติดตั้งถุงพลาสติก</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. ขั้นสุดท้ายที่ Box หรือถุงพลาสติกในแบบ
<table>
<thead>
<tr>
<th>ขั้นตอนการปฏิบัติงาน</th>
<th>คำอธิบาย</th>
<th>ข้อควรระวัง</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. ตัดหุ้ม, ถอดกลมปลายหุ้ม และ ท้าการตัดตามแบบของวงจรไฟฟ้า</td>
<td>1. นำผ้าห่มวางที่กระแทกหน้าท้ายท้ายการตัด 2. ตัด Offset ปลายหุ้มเข้า Box ตามลักษณะการตัดจากใบหุ้มตามรูป</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)
### ใบชี้ต่อนาน	การปฏิบัติงาน

<table>
<thead>
<tr>
<th>ชื่อ provenance</th>
<th>ทัศนัย</th>
<th>ข้อควรระวัง</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. ทัศนัย 90° ความสูงใจตามแบบ โดยทั่วกราฟิก ตามด้านทัศนัยทัศนัย 90° จากไปดูด้วย</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image1)

5. นำทัศนัยทัศน

1. นำทัศนัยทัศนัยทัศนัยทัศนัยทัศนัยทัศนัยทัศนัยทัศนัยทัศน

![Figure 1](image2)

![Figure 2](image3)
2. ประกอบท่อเข้ากับ Box

3. นำประกอบมุกกด lock nuts และ Bushing ไว้แน่น

6. ยึดที่คอ Strap

1. ให้ระยะห่างของ Strap ถึง Strap ประมาณเท่าที่ 2 เมตร และ Strap ถึง Box ประมาณ 30 ซม.
7. ต้องGround

1. ทำการขุดหลุมบนพื้นที่จะวาง Ground ปลายปลายพาน ทางเขตปลอดภัย ขนาด 1.5 มม.² พันรอบท่อ
 2-3 รอบ

2. บัดกรีดยอดดินดี

3. หัวใช้ Clamp ยึดพอดีกับ Ground
Fish wire

1. Fish wire from the ground

2. Fish wire from the ground

3. Fish wire from the ground

4. Fish wire from the ground
<table>
<thead>
<tr>
<th>ตอน</th>
<th>รายละเอียด</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. สายไฟฟ้า</td>
<td>1. นำ Fish wire รอบหาง Fish wire ผ่าน องค์ประกอบของ นำสายไฟฟ้าด้านล่างของ Fish wire ที่ปลายที่ 2. ใช้ทแหนงม้วนปลายสายด้านที่ล่างมี Fish wire</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
<table>
<thead>
<tr>
<th>1. ตีดสาย Fish wire ใส่สายไฟพารารอยเข้า อยู่โทษ</th>
<th>2. ปลดสายไฟพาราออกจาก Fish wire</th>
<th>3. วัดระยะปลายสายไฟคั่นมาก แล้วตะเคียน</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. นำ Fish wire ร้อยทอง ส่วนบนเพื่อทำการเดินสายรอบห้อง คราวเช้าเช่นไป</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ขั้นตอนการปฏิบัติงาน</td>
<td>ค่าอธิบาย</td>
<td>ข้อควรระวัง</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 11. ต้องตรวจสอบว่าสวิตช์, เท้ารับ, ขาหน้า และขาหลังของ _Box_ ซ้อนอยู่ในตู้โดยตรง | 1. ติดตั้งสวิตช์, เท้ารับ, ขาหน้า และขาหลังของ _Box_ ซ้อนอยู่ในตู้โดยตรง | ได้รับการตรวจสอบตามแบบเดิม | 2. ติดตั้งและตรวจสอบให้เหมาะสม |}

> 1. ติดตั้งและตรวจสอบให้เหมาะสม

3. ปิดสวิตช์ด่วน ๆ

<table>
<thead>
<tr>
<th>12. ทดสอบอุปกรณ์</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ตรวจสอบกับตู้ของความร้อนและกับสวิตช์</td>
<td>ตรวจสอบกับตู้ของความร้อนและกับสวิตช์</td>
<td></td>
</tr>
</tbody>
</table>
คำสั่ง จงปฏิบัติการเดินสายไฟอย่างดังนี้

1. ควบคุมหูดหลอด E1 และ E2 พร้อมกันด้วย S1, S2 และ S3 ให้ 3 จุด
2. สี่เหลี่ยม S4 เป็นสวิตช์ทางเดียวควบคุมหลอด E3
3. เจาะวับ 1 จุด
4. ใส่สายกินด่วน

สัญลักษณ์

LR = Conduletteals X9 = Octagon box
T = Conduletteals E1, E2, E3 = Incandescent lamp
F1 = Fuse S2 = 4 Way switch
X1, X4 = Square box S4 = 1 Way switch
X2, X5 = Single gang box S1, S3 = 2 Way switch
X7, X8 = Single gang box C1, C2 = Coupling E.M.T.
X3, X6 = Octagon box

อุปกรณ์ที่ใช้ในการกินด่วนและร้อยสายไฟในหลอด

1. หลอด EMG ขนาด 1 นิ้ว 1/2
2. Octagon box 1 กล่อง
3. Single gang box 2 กล่อง
4. Strap 12 ตัว
5. Connector 8 ตัว
6. สกรูสกรีนทิช กล่อง
7. สวิตช์ 1 x 1.5 มม.² และ 1 x 1 มม.² 10 ตัว
8. หลอดไฟฟ้าหอมมุก 2 หลอด
9. สวิตช์ 4 ทาง 1 ตัว
10. สวิตช์ทางเดียว 1 ตัว
11. สวิตช์ 2 ทาง 2 ตัว
12. Coupling 2 ตัว
<table>
<thead>
<tr>
<th>เรื่อง</th>
<th>วงจรไฟฟ้าส้าตระบู</th>
<th>เทคนิคสายร้อยทอ</th>
</tr>
</thead>
<tbody>
<tr>
<td>เครื่องมือที่ใช้</td>
<td>Bender คัพคลอ EMT 6½"</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ปราบเทลายาน</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>ปากกาจับทอง</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>เลือด</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Reamer</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>ตะไบ</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>ไขควงชูก</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>ตะแกรง</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>ปิก loudly</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>ดินสอ</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>กลับเมตร</td>
<td></td>
</tr>
</tbody>
</table>
| 11. | ลงมือ
dataTable
<table>
<thead>
<tr>
<th>ข้อตอนการปฏิบัติงาน</th>
<th>คำอธิบาย</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ศึกษาใบงาน</td>
<td>1. เตรียมเครื่องมือและอุปกรณ์</td>
</tr>
<tr>
<td>2. กำหนดขนาดทองบนแผง</td>
<td>2. เขียนโครง Working เจาะรายงานบนแผงลาด้านบนทุกตน</td>
</tr>
<tr>
<td>3. พิเศษสูง</td>
<td></td>
</tr>
<tr>
<td>4. พิเศษ, ลงคอปลายยอดและ</td>
<td></td>
</tr>
<tr>
<td>ทำกรอกคัดแยกแบบของ</td>
<td></td>
</tr>
<tr>
<td>วงจรในใบงาน</td>
<td></td>
</tr>
<tr>
<td>5. นำฝาที่ทำกรอกกดแล้ว</td>
<td></td>
</tr>
<tr>
<td>ประกอบกับอุปกรณ์ต่างๆ</td>
<td></td>
</tr>
<tr>
<td>บนแผง</td>
<td></td>
</tr>
<tr>
<td>6. ยึดหลังตัว Strap</td>
<td></td>
</tr>
<tr>
<td>7. คละค้ำ</td>
<td></td>
</tr>
<tr>
<td>8. ทำความสะอาดโลหะ</td>
<td></td>
</tr>
<tr>
<td>9. ขอสำหรับไฟฟ้า</td>
<td></td>
</tr>
<tr>
<td>10. พิเศษรายชื่อ</td>
<td></td>
</tr>
<tr>
<td>11. พบเรื่องและพิเศษสูง</td>
<td></td>
</tr>
<tr>
<td>ไฟฟ้า, ขากับ Box</td>
<td></td>
</tr>
<tr>
<td>12. คละค้ำ</td>
<td></td>
</tr>
</tbody>
</table>

คำอธิบายเพื่อไปซักถามการปฏิบัติงาน

วัสดุประสงค์:
1. บอกชนิดของอุปกรณ์ต่าง ๆ เช่น Octagon box, Condulet, Switch ฯลฯ.
2. เขียนโครง Working diagram ได้
3. พิเศษสูงอยู่ตามแบบไฟฟ้าใบงานและอุปกรณ์ต่าง ๆ ทาง ควบคุม
หลอดไฟฟ้าใช้ 3 คำแนะนำ

เกี่ยวกับ, อุปกรณ์, และวัสดุ (สุราที่ใบงาน)
หัวข้อ: จงปฏิบัติการเกี่ยวกับไฟฟ้าด้านนี้ ซึ่งในไฟฟ้านี้
1. สวิตซ์ S1 ควบคุมหลอดไฟลอยเดิม
2. สวิตซ์ S2, S3, S4 ควบคุมหลอดไฟ E2, E3 และ E4 ตามลำดับ
3. มีเวลารับจ่ายหน่วย 0.30 เมตร 2 จุด
4. เจาะสิ่งจับตัวเมตร 3 ค้าง 2 จุด
5. พื้นทางตรงค่าพาร์ติชันของสุดีผู้ป่วย Circut Breaker ในปี PPB ให้ถูกต้องตามตาราง
Panel schedule
6. พย Disconnecting หรือ Grounding ทุกจุด

ชี้แจง:
- Disconnecting switches มี fuse ขนาด 30 A - 60 A
- PPB - Panel Board
- X1, X2, X3, X11 - กองสิ่งจับตัวหลอดไฟสวิตซ์, เครื่องแบบ Handy Box
- X4, X6, X9 - กองสิ่งจับตัวหลอดไฟแบบ Octagon Box
- X5, X7, X8, X10 - กองสิ่งจับตัวแบบ Square Box
- E1 - หลอด fluorescent lamp (1 x 40 Watt)
- E2, E3, E4 - หลอด Incandescent lamp (1 x 60 Watt)
- S1, S2, S3, S4 - สวิตซ์ควบคุมหลอดไฟแบบ 1 Way switch
- P1, P2 - เตาขังไฟฟ้า 1 เพด (Receptacle)
- C1 - Coupling
- ลูกเซอร์กิต (Branch circuit breaker)

One line diagram

![Diagram Image]
Panel Schedule

3 Phase 4 Wires, SN. 220/380 V
200 Amps Main Lug
All Branch Circuit Breaker Shall Have
5000 A.C. At 240/415 Volts

<table>
<thead>
<tr>
<th>CIRCUIT BREAKER NO.</th>
<th>DESCRIPTION</th>
<th>LOAD IN VA</th>
<th>ouple</th>
<th>WIRE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>แสงสว่าง E1</td>
<td>95</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>แสงสว่าง E2</td>
<td>60</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>แสงสว่าง E3</td>
<td>60</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>เทียน P1</td>
<td>220</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>แสงสว่าง E4</td>
<td>60</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>6.</td>
<td>เทียน P2</td>
<td>220</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>7.</td>
<td>มอเตอร์ 3/4 HP (1 HP)</td>
<td>81 81 81</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>มอเตอร์ X9 (1 HP)</td>
<td>81 81 81</td>
<td>20 50</td>
<td>3</td>
</tr>
</tbody>
</table>

Diagram:

Diagram showing circuit connections and load distribution.

Total Connected Load (VA) 442
Total Demand Load (VA) 1201

Main Circuit Breaker:
- AT
- AF
- A.C.
- Vols
อุปกรณ์ที่ใช้ในการติดตั้งและขยายสายภายใน

1. สาย EMT $rac{1}{2}$", $rac{3}{4}$"
2. Octagon box
3. Handy box
4. Square box
5. Strap
6. สุกุรัศความถี่ Strap และ box
7. ผู้ PPB มีชุด Circuit Breaker 1 Pole และ 3 Pole ตามตาราง Panel schedule และ One line diagram
8. ผู้ Dis ขนาด 30A-60A 3 phase
9. สายไฟฟ้า 1×1 mm.2 TW
10. สายเปลียสขนาด 1×1 mm.2 (Ground wire)
11. สายไฟฟ้า 1×1.5 mm.2 TW
12. สายไฟฟ้า 1×2.5 mm.2 TW
13. สายไฟฟ้า 1×4 mm.2 TW
14. ชุดโดยสารไฟฟ้าแบบรองรับเวอร์ชั่นที่ 1×40 พ.
 และแบบรองรับผันแปรขนาดที่ 1×60 พ.
15. สิทธิ์ไฟฟ้า 1 ทาง
16. Wire nut
17. EMT coupling
เครื่องมือที่ใช้

1. Bender คัพ EMT ติด 1/2" ปิด 3/8" นิ้ว
2. ประแจผมมา (Water-pumpplier)
3. ปากกาน้ำชา
4. เลียง
5. Reamer
6. ตะโป้
7. คู่ทิ้งทอง
8. หลาม
9. นิ้วทอง
10. คัพม้า
11. ต้นเมตร
<table>
<thead>
<tr>
<th>ชั้นตอนการปฏิบัติงาน</th>
<th>คำอธิบาย</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ศึกษาแบบใบงาน</td>
<td>1. เครื่องมือ เครื่องมือและอุปกรณ์ต่าง ๆ</td>
</tr>
<tr>
<td></td>
<td>2. เขียนรายงาน Working ให้อก๊า должныความหมายในการทดลองนั้น</td>
</tr>
<tr>
<td>2. กำหนดหมายเลข แบบแผน ปฏิบัติงาน</td>
<td>คำอธิบายเพื่อใช้ในชั้นตอนการปฏิบัติงาน</td>
</tr>
<tr>
<td>3. ติดตั้งอุปกรณ์</td>
<td>1. Handy box, octagon box, square box</td>
</tr>
<tr>
<td></td>
<td>2. PPB และ DIS</td>
</tr>
<tr>
<td></td>
<td>3. โพยจำเป็นสําหรับการรับรองแบบ Box ป้ายใหญ่ มีขนาดประมาณกล่องเหล็ก</td>
</tr>
<tr>
<td></td>
<td>- ใช้ปล่อยไขคว่ำลักษณะ</td>
</tr>
<tr>
<td></td>
<td>longrightarrow กระแทกในวงจรเชื่อมต่อกัน</td>
</tr>
<tr>
<td></td>
<td>囟์ ห้องภรรยา</td>
</tr>
<tr>
<td></td>
<td>นําปล่อยไขคว่ำลักษณะ</td>
</tr>
<tr>
<td></td>
<td>นําโพยจำเป็นสําหรับการรับรองแบบ Box ป้ายใหญ่ มีขนาดประมาณกล่องเหล็ก</td>
</tr>
<tr>
<td></td>
<td>เพื่อให้เกิดความถาวร</td>
</tr>
<tr>
<td>ชื่อตอนการปฏิบัติงาน</td>
<td>คำอธิบาย</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>- ใช้ชุดจับวงท่อทอง</td>
<td>- ไม่แนะนำวิธีการที่จะ คงกันขากระแส</td>
</tr>
<tr>
<td>สีเหลือง PBT ปลายกับจุดติดต่อกับวง ของสูบ Circuit Breaker</td>
<td>- ตรงกับขากระแสและ จนวนของสูบ Circuit Breaker</td>
</tr>
<tr>
<td>- สีหน้าสูบ Circuit 1 Pole ไว้เชิงปลายโครง ภายในระบบวงหลัก จนหนักกับแผนจราจรวง- งานแล้ว</td>
<td>- สำหรับสูบ Circuit 3 Pole ไว้เชิงระดับที่</td>
</tr>
<tr>
<td></td>
<td>ไม่เกินการออก</td>
</tr>
<tr>
<td>ขั้นตอนการปฏิบัติงาน</td>
<td>รายละเอียด</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>4. สังเกต, สอบและล้างดีทำ</td>
<td>และทำรายการคัดค้านแบบของ</td>
</tr>
<tr>
<td>5. นำผลที่ทำการคัดค้าน</td>
<td>ประกอบเชียวหมู่ปฏิสัมพันธ์</td>
</tr>
<tr>
<td>6. ยีกฟ้าด้วย Strap</td>
<td>ฯ บนแผ่น</td>
</tr>
<tr>
<td>7. ดินที่ Ground</td>
<td>รหัสเสมอราคาไคผู้</td>
</tr>
<tr>
<td>8. ทำความสะอาดไคผู้</td>
<td>ทอดสายไฟฟ้า</td>
</tr>
<tr>
<td>9. รถยนต์ไฟฟ้า</td>
<td></td>
</tr>
<tr>
<td>10. ที่อยู่ช่วยเหลือ</td>
<td></td>
</tr>
<tr>
<td>11. ตรวจและการตัดสิน</td>
<td></td>
</tr>
<tr>
<td>ให้ไฟฟ้าที่มี Box</td>
<td></td>
</tr>
</tbody>
</table>

1. ค้ำยำยยกมือใบชื่อที่บันทึกการปฏิบัติงาน |

2. ขนาดใหญ่ Circuit Breaker ไฟเข้ารูป | ไฟแตรที่วงจรที่ก๊าด (ตามรูป) |
12. ค่อยย้ายมุม

1. ตรวจสอบวงจร และความเรียบร้อยของอุปกรณ์
2. ค่อยย้ายมุม
3. ค่อยlyลากดสายและกุดหัว Circuit ให้ย้ายไป
ค่อยนำต่อที่สาย ทดสอบวงจร หากมีการ short
circuit ดูว่า circuit ในส่วนทางจรจรจะที่จะตัด
ลง (Tripped) โดยอุปกรณ์
<table>
<thead>
<tr>
<th>ขั้นตอนการปฏิบัติงาน</th>
<th>คำอธิบาย</th>
<th>ช่องระวัง</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. ตรวจสอบสิ่งของในสายวงจรที่มีอุปสรรคที่ซ้อนที่ซ้อนกัน</td>
<td>On, OFF, TRIPPED</td>
<td></td>
</tr>
<tr>
<td>5. ตรวจสอบสิ่งของที่อยู่ด้านบนของวงจร</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ปั่วาน จงปฏิบัติการดังนี้

1. ตั้งสวิตซ์ S1 และ S5 เป็นสวิตซ์ 2 ทาง (นิ่มนิ่ม) ใช้ควบคุมหลอด E1
2. ตั้งสวิตซ์ S2 เข้าสวิตช์ทางเดียวใช้ควบคุมหลอด E3
3. ตั้งสวิตซ์ S3 เข้าสวิตช์ทางเดียวใช้ควบคุมหลอด E2
4. ตั้งสวิตซ์ S4 เข้าสวิตช์ทางเดียวใช้ควบคุมหลอด E4
5. ไฟเดินครั้งแรกจากต้น 0.30 เมตร 4 ทุก
6. ตู้ SP1, SP2 ใช้ควบคุมเลื่อน ร. X16 , X17 ตามลำดับควบคุมมอเตอร์ 3 ฟิช ไฟลิ่งทางหมุนโดยแบบ PLUGGING (DIRECT REVERSING)
7. ตั้งค่า PULL BOX และ GUTTER ตามแบบ
8. ตั้งค่า PPB และโคมCircuit breaker ตามตาราง Panel schedule พร้อมกันระบบกลับโดยสายยังคง ตามตาราง
9. ตั้งสาย Grounding ตุ่นฉุกเฉินสายเบี้ย

พื้นที่ก่อสร้าง

PPB - Panel board ~ H x W x D (Cm) 30 x 35 x 12
SP - Starter Panel ตู้ควบคุมมอเตอร์ ควบคุมไฟลิ่งทางหมุนโดยแบบ SP1, SP2 ขนาด H x W x D (Cm) 30 x 20 x 12
GUTTER - กอลองรวมสาย, แยกสายและเคลื่อนที่ PPB - Box และ SP - Box

ขนาด H x L x D (Cm) 12 x 75 x 12
X10 - Pull box กอลองรวมสาย, แยกสายส่วนหัววงจรอื่น ๆ ขนาด H x L x D (Cm) 20 x 20 x 15
X1, X2, X3, X4, X8 - กอลองสาหรับติดตั้งสวิตซ์, เครื่อง แบบ Handy box
X9, X14, X15, X18
X5, X6, X11, X12 - กอลองสาหรับติดตั้งโคมไฟพานแบบ Octagon box
X7, X13, X16, X17 - กอลองสาหรับติดตั้งโคมไฟพานแบบ Square box
E1, E2, E3, E4 - หลอด Incandescent lamp (1 x 60 Watt)
S1, S5 - สวิตช์ควบคุมไฟพานแบบ 2 Way switch
S2, S3, S4 - สวิตช์ควบคุมไฟพานแบบ 1 Way switch
P1, P2, P3, P4 - เครื่องไฟฟ้า 1 เส้น (Receptacle)
G - ลูกเซอร์กิต (Branch circuit breaker)
ONE LINE DIAGRAM
PANEL SCHEDULE

3 PHASE 4 WIRES. SN.220/380 V

200 AMPS MAIN LUG

ALL BRANCH CIRCUIT BREAKER SHALL HAVE 5000 A.I.C. AT 240/415 VOLTS

<table>
<thead>
<tr>
<th>Circuit Breaker No.</th>
<th>Description</th>
<th>Load In VA</th>
<th>Circuit Breaker</th>
<th>Wire Size</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VA @ A B C</td>
<td>AT AF POLE</td>
<td>M M²</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>แสดงส่วน El</td>
<td>60</td>
<td>10 50 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>เตาข้าม P1</td>
<td>220</td>
<td>15 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>แสดงส่วน E2, E4</td>
<td>120</td>
<td>10 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>เตาข้าม P2</td>
<td>220</td>
<td>15 1 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>แสดงส่วน E3</td>
<td>60</td>
<td>10 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>เตาข้าม P3, P4</td>
<td>440</td>
<td>15 1 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Pull box X10</td>
<td></td>
<td>15 50 1 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Space</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pull box X10</td>
<td></td>
<td>15 50 1 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Space</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Pull box X10</td>
<td></td>
<td>15 50 1 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Space</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SP-1 ไฟปั่น X16 (1HP)</td>
<td>162</td>
<td>20 50 3 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SP-2 ไฟปั่น X17 (1HP)</td>
<td>162</td>
<td>20 50 3 2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CONNECTED LOAD (VA) 2092

TOTAL DEMAND LOAD (VA) 2092

MAIN CIRCUIT BREAKER
30 AT
50 AF
AT 5000 A.I.C.
380 VOLTS
PLUGGING (DIRECT REVERSING)

วงจรไฟฟ้า (Power)

วงจรควบคุม (Control)

วิธีการทำงานและวิธีการควบคุม

จาก Interlock (N.C.) Contact ของ push button ที่ถูกกดทับ maintaining contact ของตัวแห่ดี ที่มีเกลียวของ K1 ทำงานอยู่และ Push button S3 ถูกกด K1 ก็จะหยุดการทำงาน ขณะเดียวกัน interlock contact ของ K1 ในแถว 3 จะติดวิ่งให้ K2 ทำงานทันที

ถ้า Push button ที่ส่งถึงกุญแจที่ทำงานพร้อมกัน ไม่มีตัวแห่ดี หรือตัวควบคุมการทำงาน Maintaining contact มากมาย จะมีแสงที่ดีในขั้นตอนที่ทำงานตลอดเวลา (หรือเรียกว่า Lock itself contact)
รายการสุญญ์

S1 Push button "OFF"
S2 Push button "FORWARD"
S3 Push button "REVERSE"
K1 Forward contactor
K2 Reverse contactor
F1 Main fuses
F2 Control fuse
F3 Protective motor relay
M1 Three phase motor
อุปกรณ์ที่ใช้ในการเดินสายและติดสายตามรายไห่

1. หลา EMT $\frac{1}{2}$" $\frac{3}{4}$"
2. Octagon box
3. Square box
4. Handy box
5. Strap
6. สกู๊ว, ตะขอ Straps
7. C-Chanel, U-Clamp
8. คู่ PPB ง่าย 1 Pole และ 3 Pole ตามรายการ Panel schedule และ One line diagram
9. คู่ SP-1, SP-2 สำหรับวงจรควบคุมและเครื่องไฟฟ้ารานกับอาคารตามแบบ Re
10. สายไฟฟ้า $1 \times 1 \text{ mm}^2$ T W
11. สายเบลล์ $1 \times 1 \text{ mm}^2$ T W (Ground wire)
12. สายเบลล์ $1 \times 1.5 \text{ mm}^2$ T W
13. สายเบลล์ $1 \times 2.5 \text{ mm}^2$ T W
14. สายเบลล์ $1 \times 4 \text{ mm}^2$ T W
15. ชุดโคมไฟฟ้าแบบโรงเรียนอินเทอร์เน็ต์ 1 x 60 Watt
16. สวิทช์ไฟฟ้า 1 ทาง
17. สวิทช์ไฟฟ้า 2 ทาง
18. Wire nut
19. EMT Coupling
20. Pull box ขนาดตามแบบ
21. Gutter ขนาดตามแบบ
<table>
<thead>
<tr>
<th>เครื่องมือที่ใช้</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bender คั้นทอง EMT 3/4″, 2″</td>
</tr>
<tr>
<td>2. ประสิทธิ์ (Water-pumpplier)</td>
</tr>
<tr>
<td>3. ปากกาเขียนทอง</td>
</tr>
<tr>
<td>4. เลือด</td>
</tr>
<tr>
<td>5. Reamer</td>
</tr>
<tr>
<td>6. ตะปู</td>
</tr>
<tr>
<td>7. ดูดใส่ทอง</td>
</tr>
<tr>
<td>8. ถม</td>
</tr>
<tr>
<td>9. บิดหลา</td>
</tr>
<tr>
<td>10. ติ่ง</td>
</tr>
<tr>
<td>11. ผลังแม่</td>
</tr>
</tbody>
</table>
การปฏิบัติงาน

<table>
<thead>
<tr>
<th>ลำดับการปฏิบัติงาน</th>
<th>รายละเอียด</th>
<th>หมายเหตุ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ศึกษาแบบใบงาน</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. กำหนดรายละเอียดแบบงาน</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. ติดตั้งกลุ่ม</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. ติดตั้ง ติดยึดตัวยกและ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. ติดตั้ง ติดตั้งที่ติดตั้งและ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. ติดตั้ง ติดตั้ง Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. ติดตั้ง Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. ติดตั้ง ติดตั้งสาเหตุ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. ติดตั้ง ติดตั้ง Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. ติดตั้ง ติดตั้งกลุ่ม</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. ติดตั้ง ติดตั้งกลุ่ม</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. ติดตั้ง ติดตั้งกลุ่ม</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
วัตถุประสงค์
เพื่อให้ผู้เรียนสามารถรับรู้:
1. วิธีการลักษณะของรางวัลที่ต้องการ
2. ผลส่วนประกอบและการนำไปใช้งานได้

วิธีสอน
1. บรรยาย
2. สาธิต

หน่วยข้อสอบ
1. โครงสร้าง
2. ความประกอบ
3. การนำไปใช้งาน

อุปกรณ์ช่วยสอน
1. กระดาษ
g. กระดาษที่รอง

การประเมินผล
1. ใบชมรม

การวัดผล

หนังสืออ้างอิง
รางสายไฟวายกันไฟทับ (Wire way)

ลักษณะเบื้องต้นของรางสายไฟทับ ประกอบด้วยโครงสร้าง สามารถใช้รางสายไฟทับในที่ที่มีการเก็บสายไฟในที่ที่มีการเก็บสายไฟไว้ ทำให้รางสายไฟทับมีการเปลี่ยนแปลงได้ เหมาะสำหรับการใช้งานในป้ายไฟทับแบบ Wire way ขนาดหลักๆของ Wire way 4" × 4", 6" × 6", 8" × 8" หรือกว้างป้ายไฟทับตามความยาวมาตรฐาน 12" × 24" และ 60"

![Diagram of wire way]

- โครงสร้างที่มีป้ายไฟทับกว้าง

Notes:
- The diagram shows a wire way structure with a cover and electro-galvanized steel sheet.
- The dimensions mentioned are in inches (4", 6", 8", 12", 24", 60").
ลักษณะการใช้งานของ Wire way

การบรรจุสูงสุด จานปีจะลด บรรจุตามจำนวนที่ชั่วโมง (กำหนด) เท่ากับ ที่มีส่วนใหญ่ ประมาณ 20% ของพื้นที่ที่มีของ Wire way

รางสิ่งเสียเก็บเกี่ยวกับ Cable tray

ใช้สำหรับวางสายไฟบิสกิตหรือในอาคาร ขนาด 120 มม. เนื่องจากมีหลักเกณฑ์เก็บเกี่ยวกับที่มีความเสียเก็บเกี่ยวกับ แม้ความสูงสุดกับ 7 ใดๆ ควรจะต้องวางในแนวตรง และต้องใช้สายตรง แนวตรงเมื่อมี 3 ชนิด

1. แบบผ่านท่อ (Trough type) แทนนี้ต้องวางตามยาวตามแนวสายตรง สามารถใช้ในสายสูง

ขนาดเล็ก

| SIZING CHART: Straight Sections (WR Type) |
|-----------------|-----------------|
| Part No. | WR Length (mm) | Net weight (kg) |
| WR-20 | 200 | 10.5 |
| WR-30 | 300 | 13.6 |
| WR-40 | 400 | 16.0 |
| WR-50 | 500 | 19.7 |
| WR-60 | 600 | 22.8 |
หลากหลายและการติดตั้ง Cable Tray แบบ trough type

1. ตู้ควบคุม (Main distribution board)
2. ที่แขวนที่วาง tray (Brackets)
3. ข้อต่อปลายตรง (Horizontal tees)
4. ข้อต่อมุม 90° (Horizontal elbows)
5. ที่ปิด-END (Blind ends)
6. สายไฟเคเบิลที่วาง Tray จะถูกผูกรวมเป็นกลุ่ม
7. ข้อต่อกันขวาง (Horizontal crosses)
8. Support ระยะห่างทั่วไปประมาณ 1.50 - 2.00 เมตร
2. แบบรางบันได (Ladder type) มีขนาดกว้างยาวตามตารางกลาง เหมาะสำหรับกันสายและ

เคเบิลขนาดใหญ่และขนาดกลางกลาง หรือมีความแรงแรงแรงแรงแรงแรงแรงแรงแรงแรงแรงแรงแรง

ขนาดกลาง

ขนาดใหญ่

<p>| SIZING CHART: Straight Sections (SR Type) |</p>
<table>
<thead>
<tr>
<th>Part No.</th>
<th>W (width in mm)</th>
<th>Net Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-20</td>
<td>300</td>
<td>9.5</td>
</tr>
<tr>
<td>SR-30</td>
<td>400</td>
<td>11.5</td>
</tr>
<tr>
<td>SR-40</td>
<td>500</td>
<td>11.5</td>
</tr>
<tr>
<td>SR-50</td>
<td>600</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Other sizes (widths) can be made to order.

<p>| SIZING CHART: Straight Sections (JR Type) |</p>
<table>
<thead>
<tr>
<th>Part No.</th>
<th>W (width)</th>
<th>Net Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR-50</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>JR-60</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>JR-70</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>JR-80</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>JR-90</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>JR-100</td>
<td>1,000</td>
<td></td>
</tr>
</tbody>
</table>

คำหมาย
ภาพแสดงการติดตั้ง Cable tray แบบ Ladder type

ส่วนประกอบ

1. ข้อต่อโค้ง 90° (Horizontal 90° Elbows)
2. ข้อต่อแยก 90° (Horizontal 90° Elbows)
3. ข้อต่อแยก T (Horizontal tees)
4. ข้อต่อแยกก้านพาด (Horizontal crosses)
5. ข้อต่อโค้งของเส้นเดียวกัน "คานแยก" ตั้งแนวนอน (Outside vertical riser)
6. ข้อต่อโค้งของเส้นเดียวกัน "คานไข่" ตั้งแนวนอน (Inside vertical riser)
7. ตู้ตกบู้ (Main Distribution Board)
8. ตัวยับกันไฟดาย
9. ตัวยึด tray (Brackets)
10. ตัวยึด support (Hanger Rod)
3. แบบรางพู่ (Channel type) ลักษณะเป็นโพลิชิ้นที่ทำกั้นแนวพู่และต้นพู่ตั้งตรง คานโพลียิปซ์แบบชิ้น มีความยาวตามตารางมาตรฐานความยาว เหมาะสำหรับคานสูงจากพื้นถึงสำหรับไฟของล่าง ล่างของของ ๆ

SIZING CHART: Straight Sections (NPR Type)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>W (width mm)</th>
<th>Type</th>
<th>Net Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPR-15A</td>
<td>150</td>
<td>Slotted</td>
<td>3.5</td>
</tr>
<tr>
<td>NPR-15B</td>
<td>150</td>
<td>Non-Slotted</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Slotted Type

Size of the oblong hole is φ7 x (25

ข้อควรระวังความร้อน
Cable tray แบบ channel type

ส่วนประกอบ
1. ข้อต่อมุม 90° (Horizontal bends)
2. ข้อต่อกลม (Horizontal tees)
3. ข้อต่อตัดอากาศ (Horizontal crosses)
4. ข้อต่อยกระชับ (Straight vertical risers)
5. ข้อต่อโค้ง (Horizontal elbows)
6. จุดตัด (Blind end)
7. ที่ตั้ง Tray (Brackets)
8. Support
ผังเดี่ยว (Bus duct)

สิ่งที่ย่อการนำอากาศและโรงงานอุตสาหกรรมเรียกให้ใช้งานกันเป็นส่วนย่อย (feeder) ผ่านจากแต่ละจุดจาปั๊มน้ำมันใช้กระแสไฟฟ้าผมมาก หากใช้งานไฟฟ้าตั้งโต๊ะไปจำเป็นจะต้องมีการจ่ายระบบสายสัมภ์ ค่าน้ำหนักตามราคาจะเจริญขึ้น นอกจาก Bus duct จะเป็นสายย่อยแล้วนี้ใช้ตัดทั้งสายประปาใหญ่ (main) ตาม น้ําจากค่าความต้านทาน ตู้ติ่งจะต้องถูกติดต่อกับระบบสายประปาน้ำมัน ในระยะห่างแบบเกินกว่า 2 ปีติ่ง ต้องอยู่ในเนื้อ มีขนาดต่ำสุด 225-4,000 Amp.,และตู่น้ำหนักต่ำ แต่มีขนาดต่ำสุด 225-5,000 Amp. ระบบต่างรายชายปุ่มตัด แบ่งให้ได้

1. แบบ 3 เพลิ่ง 3 ตู่น
2. แบบ 3 เพลิ่ง 3 ตู่น 50% มีเท่าสายย่อยภายใน
3. แบบ 3 เพลิ่ง 4 ตู่น 100% เท่าสายย่อย
4. แบบ 3 เพลิ่ง 4 ตู่น 100% เท่าสายย่อย และ 50% สายย่อยภายใน

การติดตั้ง ปั๊มตัวน้ำมันติดตั้งในแนวระดับโดย Hanger support ในทุกระยะ 3 เมตร หรือในแนวระดับ Rigid vertical hanger ติดตั้งเป็น spring vertical hanger ลักษณะและส่วนประกอบต่าง ๆ ของปั๊มตัวน้ำมัน
ภาพแสดงการติดตั้งบล็อกค์ที่กำลังฟิล์ดของบล็อกค์ในโครงสร้างไม่มีอิเล็กทรอนิกส์ ไม่ติดตั้งในช่องทางขึ้นลง แล้วตั้งผืนบล็อกค์บนเช่น โต๊ะวางนั่ง ล้อ หรือบล็อกค์
<table>
<thead>
<tr>
<th>วัตถุประสงค์</th>
<th>เพื่อให้ผู้รับการฝึกสามารถที่จะ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. อาจมีตาราง ฯ จากตารางการใช้ยาอุปกรณ์</td>
</tr>
<tr>
<td></td>
<td>2. นำภาพจากตารางการใช้ยาอุปกรณ์</td>
</tr>
</tbody>
</table>

| วิธีสอน | 1. บรรยาย |

| ข้อสรุปการฝึก | 1. ตารางการสอน 1 - 13 |

| อุปกรณ์ช่วยฝึก | 1. กระดาษด้า 2. ใบชมูล |

| การมอบหมายงาน | 1. ใบชมูล |

| การวัดผล | ถาม - ตอบ |

| หนังสืออ้างอิง |
ตารางแสดงหลักการพิจารณาปริมาณน้ำที่มี 60°C - 100°C

| ขนาดการส่งกำลังด้วยสายตามนอร์มัล NEC 310-16 ขนาดใหญ่กับลูกเล็ก
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ขนาดแรงดัน 0-2000 V ลูกเล็กโดยรวมในเกิน 30°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ขนาด AWG</th>
<th>60°C (140°F)</th>
<th>75°C (167°F)</th>
<th>90°C (194°F)</th>
<th>110°C (230°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM</td>
<td>T, TW</td>
<td>RHW, THW,</td>
<td>THHN, XHHW</td>
<td>AVA</td>
</tr>
<tr>
<td>14²</td>
<td>15</td>
<td>15</td>
<td>25²</td>
<td>30</td>
</tr>
<tr>
<td>12²</td>
<td>20</td>
<td>20</td>
<td>30²</td>
<td>35</td>
</tr>
<tr>
<td>10²</td>
<td>30</td>
<td>30</td>
<td>40²</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>65</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>85</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>100</td>
<td>105</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>115</td>
<td>120</td>
<td>135</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>130</td>
<td>140</td>
<td>160</td>
</tr>
<tr>
<td>0</td>
<td>125</td>
<td>150</td>
<td>155</td>
<td>190</td>
</tr>
<tr>
<td>00</td>
<td>145</td>
<td>175</td>
<td>185</td>
<td>215</td>
</tr>
<tr>
<td>000</td>
<td>165</td>
<td>200</td>
<td>210</td>
<td>245</td>
</tr>
<tr>
<td>0000</td>
<td>195</td>
<td>230</td>
<td>235</td>
<td>275</td>
</tr>
<tr>
<td>250</td>
<td>215</td>
<td>255</td>
<td>270</td>
<td>315</td>
</tr>
<tr>
<td>300</td>
<td>240</td>
<td>285</td>
<td>300</td>
<td>345</td>
</tr>
<tr>
<td>350</td>
<td>260</td>
<td>310</td>
<td>325</td>
<td>390</td>
</tr>
<tr>
<td>400</td>
<td>280</td>
<td>335</td>
<td>360</td>
<td>420</td>
</tr>
<tr>
<td>500</td>
<td>320</td>
<td>380</td>
<td>405</td>
<td>470</td>
</tr>
<tr>
<td>600</td>
<td>355</td>
<td>420</td>
<td>455</td>
<td>525</td>
</tr>
<tr>
<td>700</td>
<td>385</td>
<td>460</td>
<td>490</td>
<td>560</td>
</tr>
<tr>
<td>750</td>
<td>400</td>
<td>475</td>
<td>500</td>
<td>580</td>
</tr>
<tr>
<td>800</td>
<td>410</td>
<td>490</td>
<td>515</td>
<td>600</td>
</tr>
<tr>
<td>900</td>
<td>435</td>
<td>520</td>
<td>555</td>
<td>-</td>
</tr>
</tbody>
</table>

* ตัวเลขพิเศษที่ระบุในตารางแสดงตัวเลขนั้นและบินคือจำนวนสายไฟที่ไม่เกิน 3 เส้นในช่องเกินสายไฟ
 ตัวเลขนั้น

* ขนาดสายพิเศษสำหรับชนิด RHH, THHN และ XHHW สำหรับตัวเลขนั้น AWG เบอร์ 14, 12 และ 10 ระบุเลขค่าที่เกินตัวเลขนั้น 75°C
ภาคผนวกที่ 2

ขนาดกระแสสำหรับสายไฟฟ้าดูม มอก.11-2518 แนะนำให้ต่ำกว่าอุณหภูมิไม่เกิน 60 °C ขนาดแรงดัน 250 v อุณหภูมิภายนอกไม่เกิน 40 °C

<table>
<thead>
<tr>
<th>ขนาดสาย (mm²)</th>
<th>สายเดินในอาคาร</th>
<th>สายเดินในอาคาร *สูงไม่เกิน 3 เส้น ได้รับอนุญาต รอยสายไฟฟ้าเกินกว่านั้น</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>1.0</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>53</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>72</td>
<td>49</td>
</tr>
<tr>
<td>25</td>
<td>96</td>
<td>63</td>
</tr>
<tr>
<td>35</td>
<td>120</td>
<td>78</td>
</tr>
<tr>
<td>50</td>
<td>152</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>191</td>
<td>122</td>
</tr>
<tr>
<td>95</td>
<td>233</td>
<td>147</td>
</tr>
<tr>
<td>120</td>
<td>270</td>
<td>170</td>
</tr>
<tr>
<td>150</td>
<td>300</td>
<td>192</td>
</tr>
</tbody>
</table>
ใบข้อมูล

หลักสูตร ช่างไฟฟ้า

หน่วยการฝึก เกี่ยวกับหลักการรวม

เรื่อง ทางการแพทย์

หัวขอวิชา สายไฟฟ้าภายในโรงงานและ

การทำงานกับสายไฟฟ้า

งำนออกที่ 10

สาขาวิชา

อุณหภูมิโดยรอบ สูงกว่า 40°C ให้คุณค่าในการตัดสินใจตัวคุณสมบัติต่างๆ

+ อุณหภูมิโดยรอบ สูงกว่า 3 เส้น โคโรนาแบบสูงและที่บ้านของหัว ให้ใช้สูง

ตารางค่าการตัดสินใจตัวคุณสมบัติ

<table>
<thead>
<tr>
<th>อุณหภูมิโดยรอบ (°C)</th>
<th>หัวคุณสมบัติ</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 - 45</td>
<td>0.866</td>
</tr>
<tr>
<td>46 - 50</td>
<td>0.707</td>
</tr>
<tr>
<td>51 - 55</td>
<td>0.500</td>
</tr>
</tbody>
</table>

ตารางค่าการตัดสินใจตัวคุณสมบัติ

<table>
<thead>
<tr>
<th>จำนวนสาย (เส้น)</th>
<th>หัวคุณสมบัติ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 - 6</td>
<td>0.800</td>
</tr>
<tr>
<td>7 - 24</td>
<td>0.700</td>
</tr>
<tr>
<td>25 - 42</td>
<td>0.600</td>
</tr>
<tr>
<td>เกิน 42</td>
<td>0.500</td>
</tr>
</tbody>
</table>
ภาคตอนที่ 3

ขนาดกระแสสำหรับสายไฟพานใน ผล. 11-2518 ฉนวนไทยด้านข้างอุปกรณ์ไม่เกิน 75 °C ขนาดแรงดัน 750 V อุปกรณ์โดยรอบไม่เกิน 40 °C

<table>
<thead>
<tr>
<th>ลักษณะการใช้งาน</th>
<th>ขนาดกระแส (A)</th>
<th>สายเกินในอากาศ</th>
<th>เกินไม่เกิน 3 ปี เกินไม่เกิน 5 ปี</th>
<th>ผลภัณฑ์ไฟฟ้าที่เทียบกับ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ขนาดสาย (mm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>19</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>41</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>66</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>94</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>122</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>152</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>194</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>241</td>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>295</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>345</td>
<td>222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>397</td>
<td>252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>456</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>533</td>
<td>325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>610</td>
<td>368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>712</td>
<td>427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>806</td>
<td>479</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ใบข้อมูล

สาย THW

อุณหภูมิโดยรอบสูงกว่า 40 °C ให้ค่าขั้นบรรทัดอยู่ที่คุณสมบัติ

<table>
<thead>
<tr>
<th>อุณหภูมิโดยรอบ (°C)</th>
<th>ค่าขั้นบรรทัด</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 - 45</td>
<td>0.932</td>
</tr>
<tr>
<td>46 - 50</td>
<td>0.852</td>
</tr>
<tr>
<td>51 - 55</td>
<td>0.761</td>
</tr>
<tr>
<td>56 - 60</td>
<td>0.659</td>
</tr>
<tr>
<td>61 - 65</td>
<td>0.529</td>
</tr>
<tr>
<td>66 - 70</td>
<td>0.398</td>
</tr>
</tbody>
</table>

การตัดสินมุมข้อกุดที่ 3 เซน. ใหม่มีข้อกำหนดและขั้นนำสำหรับบัดกลวงคิน เกินใน

<table>
<thead>
<tr>
<th>จำนวนสาย (เซน.)</th>
<th>ค่าขั้นบรรทัด</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 - 6</td>
<td>0.800</td>
</tr>
<tr>
<td>7 - 24</td>
<td>0.700</td>
</tr>
<tr>
<td>25 - 42</td>
<td>0.600</td>
</tr>
<tr>
<td>เกิน 42</td>
<td>0.500</td>
</tr>
</tbody>
</table>
ภาคผนวกที่ 4

ขนาดกระแสสําหรับสายไฟฟ้า ตาม มอก. 11-2518 ตั้งไว้กับตัวบําแหน่งมี
ไม่เกิน 60 °C ขนาดแรงดัน 250 V ลุกลามคงอยู่ไม่เกิน 40 °C

<table>
<thead>
<tr>
<th>ขนาดสาย (mm²)</th>
<th>อัตรากระแสใช้งาน</th>
<th>ขนาดกระแส A (สาย 2 แกน เกินใน</th>
<th>ราคาต่อร้อยแพนวัด</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>
น้ำอุณหภูมิโดยสุกกว่า 40 °C ให้ล้างสังเคราะห์ด้วยวิธีติดตั้ง

<table>
<thead>
<tr>
<th>อุณหภูมิ (°C)</th>
<th>หัวชุดฉีด</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 - 45</td>
<td>0.866</td>
</tr>
<tr>
<td>46 - 50</td>
<td>0.707</td>
</tr>
<tr>
<td>51 - 55</td>
<td>0.500</td>
</tr>
</tbody>
</table>

ภาพพิกัดที่ 5

ขนาดกระแสสำหรับสายไฟฟ้าม ฉลาก 11-2518 อบวงใช้กับสายลวดอุณหภูมิไม่เกิน 60 °C ขนาดแรงดัน 750 V น้ำอุณหภูมิโดยสุกกว่า 40 °C
ป้ายสั่งซ่อม

สาย NYV

ที่น้ำยา 4 แบบ

ประกอบฝาพิมพ์ใน

ที่น้ำยา 2 แบบ

ตัวนำท่อยาง контакต์

ได้รับความร้อนระดับ 40° C หญดดลการแปรสภาพตัวสุญทยัดคาน

<table>
<thead>
<tr>
<th>อุณหภูมิโดยรอบ (°C)</th>
<th>ตัวสุญทยัดคาน</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 - 45</td>
<td>0.866</td>
</tr>
<tr>
<td>46 - 50</td>
<td>0.707</td>
</tr>
<tr>
<td>51 - 55</td>
<td>0.500</td>
</tr>
</tbody>
</table>

ภาคผนวกที่ 6

ขนาดกระแสสำหรับสายยอดตาม ผลิต. 11-2518 สายน้ำยาที่น้ำยาอุณหภูมิไม่เกิน 60° C ขนาดแรงดัน 250 V อุณหภูมิโดยรอบไม่เกิน 40° C

| ขนาดสาย (mm²) | ขนาดกระแส (A) สายแบบที่ 1, สายแบบที่ 2 | สายแบบที่ 3, สายแบบที่ 4 |
|----------------|---|
| 0.5 | 8 |
| 0.75 | 10 |
| 1.0 | 12 |
| 1.5 | 16 |
| 2.5 | 20 |
ภาคที่ 7

ขนาดกระแสสำหรับสายไฟฟ้า ขนาดกรณีที่ใช้ฉีดเหล็กดึง มีข้อ ให้ปิดความอุณหภูมิไม่เกิน 90°C ขนาดวงจรทั้งหมด 15 kV ฉีดเหล็กโดยไม่เกิน 40°C

<table>
<thead>
<tr>
<th>ขนาดสาย (mm²)</th>
<th>ตัวบ้านพักหัว ไม่เกิน 30%</th>
<th>ตัวบ้านพักหัว เกิน 30%</th>
<th>หัวบ้านคีย์ 4 เส้น</th>
<th>หัวบ้านคีย์ 4 เส้น</th>
<th>หัวบ้านคีย์ 5 เส้น</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 - 100</td>
<td>35</td>
<td>201</td>
<td>167</td>
<td>156</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>248</td>
<td>200</td>
<td>188</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>366</td>
<td>291</td>
<td>270</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>423</td>
<td>311</td>
<td>306</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>487</td>
<td>378</td>
<td>346</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>556</td>
<td>428</td>
<td>393</td>
<td>518</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>655</td>
<td>497</td>
<td>456</td>
<td>596</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>752</td>
<td>562</td>
<td>514</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>898</td>
<td>659</td>
<td>600</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1030</td>
<td>743</td>
<td>674</td>
<td>888</td>
</tr>
</tbody>
</table>

ฉีดเหล็กโดยไม่เกิน 40°C ใช้ขนาดสายกระแสที่แตกต่างกัน

<table>
<thead>
<tr>
<th>อุณหภูมิ (°C)</th>
<th>ดัชนี</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.18</td>
</tr>
<tr>
<td>30</td>
<td>1.09</td>
</tr>
<tr>
<td>50</td>
<td>0.89</td>
</tr>
</tbody>
</table>
ภาคผนวกที่ 8

ขนาดกระแสสายวังสายไฟฟ้า บนแนวค่าสูงสุดไฟฟ้าของสถูก ที่มี ใช้กับหัวน้ำอุทุมภูมิไม่เกิน 90 °C ขนาดแรงดัน 25 KV อุณหภูมิโดยรอบไม่เกิน 40 °C

<table>
<thead>
<tr>
<th>ขนาดสาย (mm²)</th>
<th>หลอดหัวย่อย</th>
<th>หลอดหัวย่อย 3 เส้น</th>
<th>หลอดหัวย่อย 1 วงจร</th>
<th>ต้นบานโดยตรง โวลต์ (ร้อยละ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>245</td>
<td>197</td>
<td>185</td>
<td>237</td>
</tr>
<tr>
<td>95</td>
<td>360</td>
<td>286</td>
<td>265</td>
<td>347</td>
</tr>
<tr>
<td>120</td>
<td>416</td>
<td>325</td>
<td>300</td>
<td>396</td>
</tr>
<tr>
<td>150</td>
<td>477</td>
<td>370</td>
<td>338</td>
<td>447</td>
</tr>
<tr>
<td>185</td>
<td>543</td>
<td>417</td>
<td>383</td>
<td>505</td>
</tr>
<tr>
<td>240</td>
<td>638</td>
<td>484</td>
<td>444</td>
<td>580</td>
</tr>
</tbody>
</table>

คำอธิบาย:

- เทปท่อหลังหัวย่อย
- หัวย่อย
- เส้นไหมแดง เส้นไหมสีเขียว ที่มี-xlpe
- หัวย่อย 25 KV 80°C XLPE
น้ำอุณหภูมิโดยประมาณจาก 40 °C ให้ผลต้านทานกระแสวัฏจักรต่างๆ ดังนี้

<table>
<thead>
<tr>
<th>อุณหภูมิโดยรวม (°C)</th>
<th>พารามิเตอร์</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.18</td>
</tr>
<tr>
<td>30</td>
<td>1.09</td>
</tr>
<tr>
<td>50</td>
<td>0.89</td>
</tr>
</tbody>
</table>

ภาคผนวกที่ 9

จานวนสูงสุดของสายไฟในโดยรอบสายการงานในภาคผนวกที่ 2 และ 3

<table>
<thead>
<tr>
<th>ขนาดสาย (mm²)</th>
<th>จำนวนสูงสุดของสายไฟในโดยรอบสายการงานในภาคผนวกที่ 2 และ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.7-16</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>95</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>185</td>
<td>-</td>
</tr>
<tr>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
</tr>
</tbody>
</table>
ตารางพยากรณ์

ตารางที่ 10

<table>
<thead>
<tr>
<th>ขนาดทางการทางสี, mm (นิ้ว)</th>
<th>ผลรวมของแรงหนักของคิวกรูรูดสูง (ต่อกิโลกรัม-เซนติเมตร)</th>
<th>ไฟฟ้าสูญเสียในระยะสั้นที่น้ำมันสีต่างๆ</th>
<th>สาย 1 เซนติโอด</th>
<th>สาย 2 เซนติโอด</th>
<th>สายมากกว่า 2 เซนติโอด</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 (1/2)</td>
<td>103.9</td>
<td>60.8</td>
<td>78.4</td>
<td>137.6</td>
<td>223.0</td>
</tr>
<tr>
<td>18 (3/4)</td>
<td>182.3</td>
<td>106.7</td>
<td>137.6</td>
<td>223.0</td>
<td>386.0</td>
</tr>
<tr>
<td>25 (1)</td>
<td>295.5</td>
<td>172.9</td>
<td>223.0</td>
<td>386.0</td>
<td>525.4</td>
</tr>
<tr>
<td>35 (1 1/4)</td>
<td>511.4</td>
<td>299.1</td>
<td>386.0</td>
<td>525.4</td>
<td>866.0</td>
</tr>
<tr>
<td>40 (1 1/2)</td>
<td>696.1</td>
<td>407.2</td>
<td>525.4</td>
<td>866.0</td>
<td>1235.6</td>
</tr>
<tr>
<td>55 (2)</td>
<td>1147.4</td>
<td>671.1</td>
<td>866.0</td>
<td>1235.6</td>
<td>1907.8</td>
</tr>
<tr>
<td>65 (2 1/2)</td>
<td>1637.1</td>
<td>957.6</td>
<td>1235.6</td>
<td>1907.8</td>
<td>2551.4</td>
</tr>
<tr>
<td>80 (3)</td>
<td>2527.8</td>
<td>1478.5</td>
<td>1907.8</td>
<td>2551.4</td>
<td>3285.2</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>3380.7</td>
<td>1977.4</td>
<td>2551.4</td>
<td>3285.2</td>
<td>4115.3</td>
</tr>
<tr>
<td>100 (4)</td>
<td>4352.9</td>
<td>2546.1</td>
<td>3285.2</td>
<td>4115.3</td>
<td>5162.8</td>
</tr>
<tr>
<td>115 (4 1/2)</td>
<td>5452.8</td>
<td>3189.4</td>
<td>4115.3</td>
<td>5162.8</td>
<td>7455.6</td>
</tr>
<tr>
<td>130 (5)</td>
<td>6840.7</td>
<td>4001.2</td>
<td>5162.8</td>
<td>7455.6</td>
<td></td>
</tr>
<tr>
<td>155 (6)</td>
<td>9878.6</td>
<td>5778.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ตารางที่ 11

<table>
<thead>
<tr>
<th>แบบและขนาด ของกิสก้าไฟฟ้า (ร้อยสูง)</th>
<th>ขนาดทางสี, mm²</th>
<th>จำนวนสูงสุดของกิสก้าไฟฟ้า</th>
<th>(ตารางที่ 2 และ 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 200</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>No. 500</td>
<td>2.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>no.</td>
<td>ขนาดเส้นขนาน (mm.²)</td>
<td>จำนวนเส้นสูงสุด (ตารางแสดงขามันที่ 2 และ 3)</td>
<td>ติดต่อกับปริมาณไฟฟา</td>
</tr>
<tr>
<td>700</td>
<td>2.5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1000</td>
<td>2.5</td>
<td>8</td>
<td>*</td>
</tr>
<tr>
<td>1500</td>
<td>2.5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1900</td>
<td>2.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2000</td>
<td>2.5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2100</td>
<td>2.5</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>2200</td>
<td>2.5</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>3000</td>
<td>2.5</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>4000</td>
<td>2.5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>6000</td>
<td>2.5</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

* ติดต่อกับปริมาณไฟฟา
ภาคผนวกที่ 12

ที่กําลังมัลนิยามว่า "fuse and circuit breaker" ไว้ตามกลั่น (inverse time) มีขนาดตั้งต้นไปนี้ (กรม 205-4)
2, 3, 4, 5, 6, 10, 15, 16, 20, 25, 30, 35, 40, 50, 63, 70, 80, 90,
100, 110, 125, 150, 160, 175, 200, 225, 250, 300, 350, 400, 450,
500, 600, 630, 700, 800, 900, 1000, 1200, 1250, 1600, 2000, 2500,
3000, 4000, 5000, 6000, และ 6300 A

อย่างปิดกําลังมัลนิยามว่า "fuse and circuit breaker" ไว้ตามกําลังอย่างหนึ่ง เช่น 470-500 A

ภาคผนวกที่ 13

แสดงราคากระแสของบันทั้งสําหรับบังคับดูดออก แรงเชิงต่อ 220 V

<table>
<thead>
<tr>
<th>บันทั้งสําหรับบังคับดูดออก</th>
<th>บันทั้งสําหรับบังคับดูดออก</th>
<th>บันทั้งสําหรับบังคับดูดออก</th>
<th>บันทั้งสําหรับบังคับดูดออก</th>
<th>บันทั้งสําหรับบังคับดูดออก</th>
<th>บันทั้งสําหรับบังคับดูดออก</th>
</tr>
</thead>
<tbody>
<tr>
<td>บันทั้งสําหรับบังคับดูดออก</td>
<td>บันทั้งสําหรับบังคับดูดออก</td>
<td>บันทั้งสําหรับบังคับดูดออก</td>
<td>บันทั้งสําหรับบังคับดูดออก</td>
<td>บันทั้งสําหรับบังคábbดูดออก</td>
<td>บันทั้งสําหรับบังคับดูดออก</td>
</tr>
<tr>
<td>"TL" 20W</td>
<td>1</td>
<td>20</td>
<td>220</td>
<td>0.35</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40</td>
<td>220</td>
<td>0.50</td>
<td>0.58</td>
</tr>
<tr>
<td>"TL" 40W</td>
<td>1</td>
<td>40</td>
<td>220</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>"TL" 65W</td>
<td>1</td>
<td>65</td>
<td>220</td>
<td>0.50</td>
<td>0.95</td>
</tr>
</tbody>
</table>
รายการออกสารประกอบการสิ่งที่ผลิตโดยสถาบันพัฒนาฟิสิกส์แห่งประเทศไทย สำนักงานส่งเสริมที่งานส่งเสริมพัฒนาฟิสิกส์แห่งประเทศไทย โทร. 2451820

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>รายการ</th>
<th>หน่วยการสิ่งที่ผลิต</th>
<th>จำนวน</th>
<th>ราคา</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>การผลิตงานออกแบบ</td>
<td>9 200</td>
<td>121</td>
<td>วิทยาลัยพยาบาล</td>
</tr>
<tr>
<td>82</td>
<td>การผลิตงานออกแบบ</td>
<td>1 200</td>
<td>122</td>
<td>ศูนย์สุขภาพ</td>
</tr>
<tr>
<td>83</td>
<td>การผลิตงานออกแบบ</td>
<td>2 200</td>
<td>123</td>
<td>งานบุญ</td>
</tr>
<tr>
<td>84</td>
<td>การผลิตงานออกแบบ</td>
<td>3 160</td>
<td>124</td>
<td>ศูนย์สุขภาพ</td>
</tr>
<tr>
<td>85</td>
<td>การผลิตงานออกแบบ</td>
<td>4 150</td>
<td>125</td>
<td>พื้นฐานการสิ่งที่ผลิต</td>
</tr>
<tr>
<td>86</td>
<td>การผลิตงานออกแบบ</td>
<td>5 120</td>
<td>126</td>
<td>สิ่งแวดล้อม</td>
</tr>
<tr>
<td>87</td>
<td>การผลิตงานออกแบบ</td>
<td>6 190</td>
<td>127</td>
<td>สิ่งแวดล้อม</td>
</tr>
<tr>
<td>88</td>
<td>การผลิตงานออกแบบ</td>
<td>7 200</td>
<td>128</td>
<td>ช่างอาสาออกแบบ</td>
</tr>
<tr>
<td>89</td>
<td>การผลิตงานออกแบบ</td>
<td>8 200</td>
<td>129</td>
<td>วิทยาลัยเทคนิค (ภาษาพาณิชย)</td>
</tr>
<tr>
<td>90</td>
<td>การผลิตงานออกแบบ</td>
<td>9 200</td>
<td>130</td>
<td>เยื่อแนบ</td>
</tr>
<tr>
<td>91</td>
<td>การผลิตงานออกแบบ</td>
<td>10 160</td>
<td>131</td>
<td>เยื่อแนบ</td>
</tr>
<tr>
<td>92</td>
<td>การผลิตงานออกแบบ</td>
<td>11 200</td>
<td>132</td>
<td>วิทยาลัยเทคนิค</td>
</tr>
<tr>
<td>93</td>
<td>การผลิตงานออกแบบ</td>
<td>12 150</td>
<td>133</td>
<td>วิทยาลัยพยาบาล</td>
</tr>
<tr>
<td>94</td>
<td>การผลิตงานออกแบบ</td>
<td>13 150</td>
<td>134</td>
<td>ช่างอาสาออกแบบ</td>
</tr>
<tr>
<td>95</td>
<td>การผลิตงานออกแบบ</td>
<td>1 200</td>
<td>135</td>
<td>การใช้ช่วงพัฒนา</td>
</tr>
<tr>
<td>96</td>
<td>การผลิตงานออกแบบ</td>
<td>2 160</td>
<td>136</td>
<td>การใช้ช่วงพัฒนา</td>
</tr>
<tr>
<td>97</td>
<td>การผลิตงานออกแบบ</td>
<td>3 200</td>
<td>137</td>
<td>การใช้ช่วงพัฒนา</td>
</tr>
<tr>
<td>98</td>
<td>การผลิตงานออกแบบ</td>
<td>7 200</td>
<td>138</td>
<td>การผลิตแบบพัฒนาชีวภาพ</td>
</tr>
<tr>
<td>99</td>
<td>การผลิตงานออกแบบ</td>
<td>8 180</td>
<td>139</td>
<td>การผลิตแบบพัฒนาชีวภาพ</td>
</tr>
<tr>
<td>100</td>
<td>การผลิตงานออกแบบ</td>
<td>9 200</td>
<td>140</td>
<td>กระบวนการพัฒนาชีวภาพ</td>
</tr>
<tr>
<td>101</td>
<td>การผลิตงานออกแบบ</td>
<td>13 200</td>
<td>141</td>
<td>กระบวนการพัฒนาชีวภาพ</td>
</tr>
<tr>
<td>102</td>
<td>การผลิตงานออกแบบ</td>
<td>14 200</td>
<td>142</td>
<td>การปฏิบัติการประยุกต์</td>
</tr>
<tr>
<td>103</td>
<td>การผลิตงานออกแบบ</td>
<td>15 200</td>
<td>143</td>
<td>ลำดับสิ่งที่ผลิต</td>
</tr>
<tr>
<td>104</td>
<td>การผลิตงานออกแบบ</td>
<td>16 200</td>
<td>144</td>
<td>ศูนย์ศาสตร์สิ่งที่ผลิต</td>
</tr>
<tr>
<td>105</td>
<td>การผลิตงานออกแบบ</td>
<td>17 190</td>
<td>145</td>
<td>ศูนย์ศาสตร์สิ่งที่ผลิต</td>
</tr>
<tr>
<td>106</td>
<td>การผลิตงานออกแบบ</td>
<td>1 150</td>
<td>146</td>
<td>ลำดับสิ่งที่ผลิต</td>
</tr>
<tr>
<td>107</td>
<td>การผลิตงานออกแบบ</td>
<td>2 120</td>
<td>147</td>
<td>ลำดับสิ่งที่ผลิต</td>
</tr>
<tr>
<td>108</td>
<td>การผลิตงานออกแบบ</td>
<td>3 140</td>
<td>148</td>
<td>ลำดับสิ่งที่ผลิต</td>
</tr>
<tr>
<td>109</td>
<td>การผลิตงานออกแบบ</td>
<td>4 200</td>
<td>149</td>
<td>ลำดับสิ่งที่ผลิต</td>
</tr>
<tr>
<td>110</td>
<td>การผลิตงานออกแบบ</td>
<td>5 130</td>
<td>150</td>
<td>การผลิตและทดสอบสิ่งที่ผลิต</td>
</tr>
<tr>
<td>111</td>
<td>การผลิตงานออกแบบ</td>
<td>6 110</td>
<td>151</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
<tr>
<td>112</td>
<td>การผลิตงานออกแบบ</td>
<td>7 200</td>
<td>152</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
<tr>
<td>113</td>
<td>การผลิตงานออกแบบ</td>
<td>1 200</td>
<td>153</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
<tr>
<td>114</td>
<td>การผลิตงานออกแบบ</td>
<td>2 200</td>
<td>154</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
<tr>
<td>115</td>
<td>การผลิตงานออกแบบ</td>
<td>3 200</td>
<td>155</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
<tr>
<td>116</td>
<td>การผลิตงานออกแบบ</td>
<td>4 160</td>
<td>156</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
<tr>
<td>117</td>
<td>การผลิตงานออกแบบ</td>
<td>5 200</td>
<td>157</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
<tr>
<td>118</td>
<td>การผลิตงานออกแบบ</td>
<td>6 200</td>
<td>158</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
<tr>
<td>119</td>
<td>การผลิตงานออกแบบ</td>
<td>7 180</td>
<td>159</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
<tr>
<td>120</td>
<td>การผลิตงานออกแบบ</td>
<td>1 160</td>
<td>160</td>
<td>ผลิตสิ่งที่ผลิต</td>
</tr>
</tbody>
</table>
รายการเอกสารประกอบการฝึกที่ผ่านโดยสถาบันพัฒนาฝีมือแรงงาน
สังกัดสพท. ได้ที่ งานห้องสมุด สภาพบัณฑิตพัฒนาฝีมือแรงงาน โทร. 2451820

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>รายการ</th>
<th>หน่วยการฝึก</th>
<th>จำนวน</th>
<th>ราคานำเข้า</th>
<th>รายละเอียด</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ช่างยนต์</td>
<td>การรับซื้อสินค้า 1</td>
<td>1</td>
<td>140</td>
<td>ราคากลั่น 2</td>
</tr>
<tr>
<td>2</td>
<td>ช่างยนต์</td>
<td>การรับซื้อสินค้า 2</td>
<td>2</td>
<td>200</td>
<td>ราคากลั่น 3</td>
</tr>
<tr>
<td>3</td>
<td>ช่างยนต์และบริการ</td>
<td>ตัดจัด</td>
<td>1</td>
<td>200</td>
<td>ช่างเครื่องมือกล</td>
</tr>
<tr>
<td>4</td>
<td>ช่างยนต์และบริการ</td>
<td>ตัดจัดและบริการ</td>
<td>2</td>
<td>200</td>
<td>งานบริการเบื้องต้น</td>
</tr>
<tr>
<td>5</td>
<td>เครื่องมือระบบเชื่อม</td>
<td>งานเชื่อมแบบเชื่อม</td>
<td>3-4</td>
<td>200</td>
<td>งานเชื่อม 1</td>
</tr>
<tr>
<td>6</td>
<td>เครื่องมือระบบเชื่อม</td>
<td>งานเชื่อมแบบเชื่อม</td>
<td>5</td>
<td>200</td>
<td>งานเชื่อม 2</td>
</tr>
<tr>
<td>7</td>
<td>เครื่องมือระบบเชื่อม</td>
<td>งานเชื่อมแบบเชื่อม</td>
<td>6</td>
<td>200</td>
<td>งานเชื่อม</td>
</tr>
<tr>
<td>8</td>
<td>ไฟฟ้าร้อยปอนด์</td>
<td>ไฟฟ้าร้อยปอนด์</td>
<td>7</td>
<td>170</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>9</td>
<td>ไฟฟ้าร้อยปอนด์</td>
<td>ไฟฟ้าร้อยปอนด์</td>
<td>8</td>
<td>190</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>10</td>
<td>ระบบกล้อง</td>
<td>ระบบกล้อง</td>
<td>9</td>
<td>200</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>11</td>
<td>ระบบกล้อง</td>
<td>ระบบกล้อง</td>
<td>10</td>
<td>190</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>12</td>
<td>ระบบกล้อง</td>
<td>ระบบกล้อง</td>
<td>11</td>
<td>180</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>13</td>
<td>ช่างประกอบ</td>
<td>ช่างประกอบ</td>
<td>1</td>
<td>200</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>14</td>
<td>ช่างประกอบ</td>
<td>ช่างประกอบ</td>
<td>2</td>
<td>140</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>15</td>
<td>สูญญาณ 1</td>
<td>สูญญาณ 1</td>
<td>3</td>
<td>130</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>16</td>
<td>สูญญาณ 1</td>
<td>สูญญาณ 1</td>
<td>4</td>
<td>180</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>17</td>
<td>สายพานผูก</td>
<td>สายพานผูก</td>
<td>5</td>
<td>150</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>18</td>
<td>ช่างยนต์เครื่องกล</td>
<td>ช่างยนต์เครื่องกล</td>
<td>1</td>
<td>180</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>19</td>
<td>ตัดจัด</td>
<td>ตัดจัด</td>
<td>2</td>
<td>190</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>20</td>
<td>ตัดจัด</td>
<td>ตัดจัด</td>
<td>3</td>
<td>120</td>
<td>งานเชื่อมแบบเชื่อม</td>
</tr>
<tr>
<td>21</td>
<td>ช่างควบคุมเส้นต่อ</td>
<td>ช่างควบคุมเส้นต่อ</td>
<td>1</td>
<td>130</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>22</td>
<td>ช่างควบคุมเส้นต่อ</td>
<td>ช่างควบคุมเส้นต่อ</td>
<td>2</td>
<td>180</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>23</td>
<td>งานเชื่อม (เส้นแบ่ง)</td>
<td>งานเชื่อม</td>
<td>3</td>
<td>170</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>24</td>
<td>งานเชื่อม (เส้นแบ่ง)</td>
<td>งานเชื่อม</td>
<td>4</td>
<td>90</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>25</td>
<td>งานเชื่อม</td>
<td>งานเชื่อม</td>
<td>5</td>
<td>130</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>26</td>
<td>งานเชื่อม</td>
<td>งานเชื่อม</td>
<td>6</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>27</td>
<td>งานเชื่อม</td>
<td>งานเชื่อม</td>
<td>7</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>28</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>1</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>29</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>2</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>30</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>3</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>31</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>4</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>32</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>ช่างเครื่องท่านักเรียน</td>
<td>5</td>
<td>130</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>33</td>
<td>การตัดต่อและปรับรูป</td>
<td>การตัดต่อและปรับรูป</td>
<td>6</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>34</td>
<td>การตัดต่อและปรับรูป</td>
<td>การตัดต่อและปรับรูป</td>
<td>7</td>
<td>130</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>35</td>
<td>การตัดต่อและปรับรูป</td>
<td>การตัดต่อและปรับรูป</td>
<td>8</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>36</td>
<td>การตัดต่อและปรับรูป</td>
<td>การตัดต่อและปรับรูป</td>
<td>9</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>37</td>
<td>ช่างโยธา</td>
<td>งานโยธา</td>
<td>1</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>38</td>
<td>งานโยธา</td>
<td>งานโยธา</td>
<td>2</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>39</td>
<td>งานโยธา</td>
<td>งานโยธา</td>
<td>3</td>
<td>200</td>
<td>เทคนิคการตัดจัด</td>
</tr>
<tr>
<td>40</td>
<td>งานโยธา</td>
<td>งานโยธา</td>
<td>4</td>
<td>130</td>
<td>เทคนิคการตัดจัด</td>
</tr>
</tbody>
</table>

หมายเหตุ บ้านที่เป็นทางการที่เป็นไปตามคำสั่งของZR.บ. ที่ 10400 รายละเอียดเงินสดในรายงานผลการฝึกอบรม ที่มีผลิตภัณฑ์ที่ผลิตได้ 10000